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ABSTRACT
In many multiagent environments, a designer has some, but
limited control over the game being played. In this paper, we
formalize this by considering incompletely specified games,
in which some entries of the payoff matrices can be chosen
from a specified set. We show that it is NP-hard for the
designer to decide whether she can make her choices so that
no action in a given set gets played in equilibrium. Hardness
holds even in zero-sum games and even in weak tournament
games (which are symmetric zero-sum games whose entries
are all −1, 0, or 1). The latter case is closely related to the
necessary winner problem for a social-choice-theoretic solu-
tion concept. We then give a mixed-integer linear program-
ming formulation for weak tournament games and evaluate
it experimentally.

1. INTRODUCTION
Game theory provides the natural toolkit for reasoning

about systems of multiple self-interested agents. In some
cases, the game is exogenously determined and all that is
left to do is to figure out how to play it. For example, if we
are trying to solve heads-up limit Texas hold’em poker (as
was recently effectively done [5]), there is no question about
what the game is. Out in the world, however, the rules of the
game are generally not set in stone. Often, there is an agent,
to whom we will refer as the designer or principal, that has
some control over the game played. Consider, for example,
applications of game theory to security domains [19, 21, 1,
23]. In the long run, the game could be changed, by adding
or subtracting security resources [4] or reorganizing the tar-
gets being defended.

Mechanism design constitutes the extreme case of this,
where the designer typically has complete freedom in choos-
ing the game to be played by the agents (but still faces a
challenging problem due to the agents’ private information).
However, out in the world, we generally also do not find this
other extreme. Usually, some existing systems are in place
and place constraints on what the designer can do. This
is true to some extent even in the contexts where mecha-
nism design is most fruitfully applied. For example, one
can imagine that it would be difficult and costly for a major
search engine to entirely redesign its existing auction mecha-
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nism for allocating advertisement space, because of existing
users’ expectations, interfacing software, etc. But this does
not mean that aspects of the game played by the advertisers
cannot be tweaked in the designer’s favor.

In this paper, we introduce a general framework for ad-
dressing intermediate cases, where the designer has some
but not full control over the game. We focus on incompletely
specified games, where some entries of the game matrix con-
tain sets of payoffs, from among which the designer must
choose. The designer’s aim is to choose so that the result-
ing equilibrium of the game is desirable to her. This prob-
lem is conceptually related to k-implementation [17] and the
closely related internal implementation [2], where one of the
parties is also able to modify an existing game to achieve
better equilibria for herself. However, in those papers the
game is modified by committing to payments, whereas we
focus on choosing from a fixed set of payoffs in an entry.

We focus on two-player zero-sum games, both symmetric
and not (necessarily) symmetric, and show NP-hardness in
both cases. (Due to a technical reason explained later, hard-
ness for the symmetric case does not directly imply hard-
ness for the not-necessarily-symmetric case.) The hardness
result for the symmetric case holds even for weak tourna-
ment games, in which the payoffs are all −1, 0, or 1. To
show this, we prove hardness of a related problem in com-
putational social choice, another important research area in
multiagent systems.

In social choice, we take as input a vector of rankings of
the alternatives (e.g., a � c � b) and as output return some
subset of the alternatives. Some social choice functions are
based on the pairwise majority graph which has a directed
edge from one alternative to another if most voters prefer
the former. One attractive concept is that of the essential
set (ES) [14, 10], which can be thought of as based on the
following game. Two abstract players simultaneously pick
an alternative, and if one player’s chosen alternative has an
edge to the other’s, the former wins. Then, the essential
set consists of all alternatives that are played with positive
probability in some equilibrium. Furthermore, an important
computational problem in social choice is the possible (nec-
essary) winner problem [7, 13, 15, 22, 3]: given only partial
information about the voters’ preferences—for example, be-
cause we have yet to elicit the preferences of some of the
voters—is a given alternative potentially (necessarily) one
of the chosen ones?

We conclude the paper by formulating and evaluating the
efficacy of a mixed-integer linear programming formulation
for the possible ES winner problem.



2. EXAMPLES
The following is an incompletely specified two-player sym-

metric zero-sum game with actions a, b, c, d.

a b c d

a 0 1 0 {−1, 0, 1}

b −1 0 1 0

c 0 −1 0 1

d {−1, 0, 1} 0 −1 0

Here, each entry specifies the payoff to the row player (since
the game is zero-sum, the column player’s payoff is implicit),
and the set notation indicates that the payoff in an entry is
not yet fully specified. E.g., {−1, 0, 1} indicates that the
designer may choose either −1, 0, or 1 for this entry. In
the case of symmetric games, we require that the designer
keep the game symmetric, so that if she sets1 u1(d, a) = 1
then she must also set u1(a, d) = −1. Thus, our example
game has three possible completions. The goal for the de-
signer, then, is to choose a completion in such a way that
the equilibrium of the resulting game is desirable to her. For
example, the designer may aim to have only actions a and c
played with positive probability in equilibrium. Can she set
the payoffs so that this happens? The answer is yes, because
the completion with u1(a, d) = 1 has this property. On the
other hand, the completion with u1(a, d) = −1 does have
Nash equilibria in which b and d are played with positive
probability (for example, both players mixing uniformly is a
Nash equilibrium of this game).

Next, consider the following incompletely specified asym-
metric zero-sum game:

` r

t −2 1

b {−1, 1} 0

Suppose the designer’s goal is to avoid row t being played in
equilibrium. One might think that the best way to achieve
this is to make row b (the only other row) look as good
as possible, and thus set u1(b, `) = 1. This results in a
fully mixed equilibrium where t is played with probability
1
4

(and ` with 1
4
). On the other hand, setting u1(b, `) = −1

results in ` being a strictly dominant strategy for the column
player, and thus the row player would actually play b with
probability 1.

3. PRELIMINARIES
In this section, we formally introduce the concepts and

computational problems studied in the paper. For a natural
number n, let [n] denote the set {1, . . . , n}.

3.1 Games
A matrix M ∈ Qm×n defines a two-player zero-sum game

(or matrix game) as follows. Let the rows of M be indexed
by I = [m] and the columns of M be indexed by J = [n],
so that M = (m(i, j))i∈I,j∈J . Player 1, the row player, has
action set I and player 2, the column player, has action
set J . If the row player plays action i ∈ I and the column

1Let u1(x, y) denote the payoff to the row player in row x
and column y.

player plays action j ∈ J , the payoff to the row player is
given by m(i, j) and the payoff to the column player is given
by −m(i, j). A (mixed) strategy of the row (resp., column)
player is a probability distribution over I (resp., J). Payoffs
are extended to mixed strategy profiles in the usual way.

A matrix game M = (m(i, j))i∈I,j∈J is symmetric if I = J
and m(i, j) = −m(j, i) for all (i, j) ∈ I × J . A weak tourna-
ment game is a symmetric matrix game in which all payoffs
are from the set {−1, 0, 1}. Weak tournament games natu-
rally correspond to directed graphs W = (A,�) as follows:
vertices correspond to actions and there is a directed edge
from action a to action b (denoted a � b) if and only if the
payoff to the row player in action profile (a, b) is 1.

3.2 Incomplete Games
An incompletely specified matrix game (short: incomplete

matrix game) is given by a matrix M ∈ (2Q)m×n. That is,
every entry of the matrix M = (m(i, j))i∈I,j∈J is a subset
m(i, j) ⊆ Q. If m(i, j) consists of a single element, we say
that the payoff for action profile (i, j) is specified, and write
m(i, j) = m instead of the more cumbersome m(i, j) = {m}.
For an incomplete matrix game M , the set of completions of
M is given by the set of all matrix games that arise from se-
lecting a number from the corresponding set for every action
profile for which the payoffs are unspecified.

An incomplete symmetric game is an incomplete matrix
game with m(j, i) = {−m : m ∈ m(i, j)} for all i ∈ I and
j ∈ J . The set of symmetric completions of an incomplete
symmetric game M is given by the set of all completions
of M that are symmetric. When considering incomplete
symmetric games, we will restrict attention to symmetric
completions, which is the reason hardness results do not
transfer from the symmetric case to the general case. An
incomplete weak tournament game is an incomplete matrix
game for which every symmetric completion is a weak tour-
nament game. Every incomplete weak tournament game
corresponds to a directed graph in which the relation for
certain pairs (i, j) of distinct vertices have not been deter-
mined.

3.3 Equilibrium Concepts
The standard solution concept for matrix games is Nash

equilibrium. A strategy profile (σ, τ) is a Nash equilibrium of
a matrix game M if the strategies σ and τ are best responses
to each other, i.e., m(σ, j) ≥ m(σ, τ) ≥ m(i, τ) for all i ∈ I
and j ∈ J . The payoff to the row player is identical in all
Nash equilibria, and is known as the value of the game.

We are interested in the question whether an action is
played with positive probability in at least one Nash equi-
librium. For improved readability, the following definitions
are only formulated for the row player; definitions for the
column player are analogous. The support supp(σ) of a
strategy σ is the set of actions that are played with posi-
tive probability in σ. An action i ∈ I is called essential if
there exists a Nash equilibrium (σ, t) with i ∈ supp(σ). By
ES row(M) we denote the set of all actions i ∈ I that are
essential.

Definition 1. The essential set ES(M) of a matrix
game M contains all actions that are essential, i.e.,
ES(M) = ES row(M) ∪ ES column(M).

There is a useful connection between the essential set
and quasi-strict Nash equilibria. Quasi-strictness is a re-



finement of Nash equilibrium that requires that every best
response is played with positive probability [12]. Formally,
a Nash equilibrium (σ, t) of a matrix game M is quasi-strict
if m(σ, j) > m(σ, τ) > m(i, τ) for all i ∈ I \ supp(σ) and
j ∈ J \ supp(τ). Since the set of Nash equilibria of a matrix
game M is convex, there always exists a Nash equilibrium
(σ, τ) with supp(σ) ∪ supp(τ) = ES(M). Moreover, it has
been shown that all quasi-strict equilibria of a matrix game
have the same support [6]. Thus, an action is contained in
the essential set of a matrix game if and only if it is played
with positive probability in some quasi-strict Nash equilib-
rium. Brandt and Fischer [6] have shown that quasi-strict
equilibria, and thus the essential set, can be computed in
polynomial time.

3.4 Computational Problems
We are interested in the question whether the designer can

set the unspecified payoffs in such a way that all equilibria
of the resulting game use only actions in a prespecified set.

• Equilibrium Containment Problem (ECP):
Given an incomplete matrix game M , a subset I ′ ⊆ I
of rows, and a subset J ′ ⊆ J of columns, does there
exist a completion M ′ of M with ES(M ′) ⊆ I ′ ∪ J ′?

One may wonder why this is the right problem to solve.
One motivation is the following. A general setup would be
that the designer has a cost in [0,∞) for each possible out-
come of the game and tries to minimize her expected cost
in the worst-case equilibrium for her. The next proposition
shows that hardness of the Equilibrium Containment Prob-
lem immediately implies hardness, and in fact inapproxima-
bility, of the problem of minimizing the designer’s cost.

Proposition 1. Suppose ECP is NP-hard. Then no
multiplicative approximation guarantee for the problem of
minimizing the designer’s expected cost (in the worst-case
equilibrium for her) can be given in polynomial time unless
P=NP.

Proof. Suppose, for the sake of contradiction, that a
polynomial-time algorithm giving such a guarantee did ex-
ist. Then, given an instance of ECP, we can use this al-
gorithm to determine whether there is a completion where
ES(M ′) ⊆ I ′∪J ′, as follows. Simply give the designer cost 0
for any outcome (i, j) ∈ I ′ × J ′, and cost 1 for any other
outcome. Then run the algorithm. If there is a completion
where ES(M ′) ⊆ I ′∪J ′, then the designer has cost 0 in any
equilibrium of this completion, and so our algorithm should
return a cost of 0 because the approximation is multiplica-
tive. If there is no such completion, then every completion
has an equilibrium with positive cost for the designer, and
so our algorithm should return a positive cost. Therefore,
we would be able to use our approximation algorithm to
solve ECP.

In the context of weak tournament games, where the es-
sential set is interpreted as a social choice function identi-
fying desirable elements from a set of vertices A, a variant
of ECP corresponds to the necessary winner problem, which
asks whether a given vertex a is in the essential set for all
completions. Clearly, this is the case if and only if there
does not exist a completion for which the essential set is
contained in A \ {a}. This motivates us to study the nec-
essary winner problem for the essential set and its natural
counterpart, the possible winner problem.

• Possible ES Winner: Given an incomplete weak
tournament game W and vertex a, is there a (sym-
metric) completion W ′ of W such that a ∈ ES(W ′)?

• Necessary ES Winner: Given an incomplete weak
tournament game W and vertex a, is a ∈ ES(W ′) for
all (symmetric) completions W ′ of W?

4. ZERO-SUM GAMES
In this section, we analyze the computational complex-

ity of the Equilibrium Containment Problem. In the proof,
we will make use of a class of games that we call alter-
nating games. Intuitively, an alternating game is a gen-
eralized version of Rock-Paper-Scissors that additionally al-
lows “tiebreaking payoffs” which are small payoffs in cases
where both players play the same action. Formally, con-
sider a triple (n, d,H), where n is an odd natural num-
ber, d = (d1, . . . , dn) ∈ {−1, 0, 1}n, and H ∈ Q>1. The
alternating game C(n, d,H) is the matrix game given by
M = (m(i, j))i∈I,j∈J with I = J = [n] and

m(i, j) =


di , if i = j

(−1)j−i−1H , if i < j

−mji , if i > j.

For example, the alternating game C(5, (−1, 1, 0, 0, 1), 10)
has payoff matrix

−1 10 −10 10 −10
−10 1 10 −10 10

10 −10 0 10 −10
−10 10 −10 0 10

10 −10 10 −10 1

 .

An alternating game C(n, d,H) is symmetric (and equiva-
lent to a weak tournament game) if and only if d = (0, . . . , 0).
Let tr(C) denote the trace of the payoff matrix of C, i.e.,
tr(C) =

∑
i∈[n] di. We call C balanced if tr(C) = 0.

Lemma 1. Let C = C(n, d,H) be an alternating game.

(i) The value of C has the same sign as tr(C) and is
monotonically increasing in tr(C).

(ii) C has a unique Nash equilibrium. In this equilibrium,
both players play completely mixed strategies.

(iii) As H → ∞, the equilibrium strategies of both players
converge to ( 1

n
, . . . , 1

n
).

In particular, part (i) implies that every balanced alternat-
ing game has value zero. We are now ready to prove that
the Equilibrium Containment Problem is intractable.

Theorem 1. The Equilibrium Containment Problem (in
matrix games that are not necessarily symmetric) is NP-
complete.

Proof. Membership in NP is straightforward, as we can
guess a completion M ′ and compute ES(M ′).

For hardness, we give a reduction from SetCover. An
instance of SetCover is given by a collection {S1, . . . , Sn}
of subsets of a universe U , and an integer k; the question
is whether we can cover U using only k of the subsets. We
may assume that k is odd (it is always possible to add a



c1 c2 c3 c4 c5 s1 s2 s3 s4 s5 t

S1,1 0 H −H H −H B B 0 0 0 N1

S1,2 {−1, 1} H −H H −H −1 −1 0 0 0 N2

S2,1 −H 0 H −H H 0 0 B B 0 N1

S2,2 −H {−1, 1} H −H H 0 0 −1 −1 0 N2

S3,1 H −H 0 H −H 0 0 B 0 B N1

S3,2 H −H {−1, 1} H −H 0 0 −1 0 −1 N2

S4,1 −H H −H 0 H 0 B 0 B 0 N1

S4,2 −H H −H {−1, 1} H 0 −1 0 −1 0 N2

x1 H −H H H −1 0 0 0 0 0 0

Figure 1: The incomplete matrix game M used in the proof of Theorem 1 for the SetCover instance given by |U | = 5, n = 4,
k = 3, S1 = {s1, s2}, S2 = {s3, s4}, S3 = {s3, s5}, and S4 = {s2, s4}. The double line separates L and R.

singleton subset with an element not covered by anything
else and increase k by 1). Define an incomplete matrix game
M where the row player has 3n− k actions, and the column
player has 2n−k+|U |+1 actions. We denote the row player’s
actions by {Si,j : i ∈ [n], j ∈ [2]} ∪ {xi : i ∈ [n− k]}.

Let L denote the restriction of the game to the first 2n−k
columns. We denote the column player’s actions in this part
of the game by {c1, . . . , c2n−k}. We set m(Si,1, ci) = 0 and
m(Si,2, ci) = {−1, 1} for all i ∈ [n] and m(xi, c2n+i) = −1
for all i ∈ [n − k]. We fill in the remaining entries with H
and −H, where H > 0 is a large constant, so that L acts
as an alternating game when exactly one of the actions Si,1

and Si,2 is removed for each i. At this point the assumption
that k is odd is important, since this means that 2n − k is
also odd and we can create an alternating game.

Let R denote the restriction of the game to the remain-
ing |U | + 1 columns. Here, we denote the columns by
{s1, . . . , s|U|, t}. For column sj , we set the payoff to be B
(where B > 0 is a large constant) in row Si,1 if sj ∈ Si,
and 0 otherwise. We set the entry in row Si,2 to be −1 if
sj ∈ Si and 0 otherwise. Next we find N1 and N2 such that
kN1 + (n− k)N2 > 0 and (k + 1)N1 + (n− k − 1)N2 < −1
(note that N1 < 0 and N2 > 0). In column t we set the entry
in row Si,1 to N1 and the entry in row Si,2 to N2, for each i.
We set all other entries of t to be zero. Figure 1 illustrates
this construction for a small instance of SetCover.

Observe that in any completion M ′ = (m′(·, ·)) of M ,
if the column player plays only actions from L, then for
each pair (Si,1, Si,2), the row player will play at most one of
them with positive probability in equilibrium, since one of
the rows will weakly dominate the other in L and the column
player’s strategy will have full support in L (see Lemma 1).
When m′(Si,2, ci) = −1, Si,1 weakly dominates Si,2, and
the opposite holds when m′(Si,2, ci) = 1. Intuitively, setting
the entry m′(Si,2, ci) to −1 corresponds to choosing Si for
the set cover, and setting m′(Si,2, ci) to 1 corresponds to
not choosing Si for the set cover. We show that there exists
a set cover of size k if and only if the essential set of the
corresponding completion is contained within L.

First, suppose that we complete the game in a way that
corresponds to a set cover of size k. We will show that
there exists an equilibrium that lies completely within L. If
the column player plays only columns from L, then we have
already observed that M behaves as an alternating game
from the perspective of the row player. By Lemma 1, both
the row and the column player can guarantee themselves a
payoff of zero since the row player has n − k undominated
actions with a 1 on the diagonal, and the same number of
undominated actions with a −1 on the diagonal. Now let
us examine the payoff for the column player from playing
any action not in L. For any action si there is some chosen
set Sj that covers element si and for which there is a prob-
ability close to 1

2n−k
(by Lemma 1, as long as H is large

enough) that the row player plays Sj,1, in which case the
column player obtains a payoff of −B; in all other cases she
obtains a payoff of at most 1. Thus, by setting B sufficiently
large, the column player will not be incentivized to play any
action si. Likewise for sufficiently large H the payoff for the
column player from playing column t is arbitrarily close to
−( k

2n−k
N1− n−k

2n−k
N2) < 0 (by the definition of N1 and N2),

so she will not play t.
Now suppose that we complete the game in a way that

does not correspond to a set cover of size k. There are three
cases: we set k payoffs to −1 but they do not correspond to
a set cover; we set too many unspecified payoffs to −1; or,
we set too few unspecified payoffs to −1. We show that in
each case the essential set is not contained in L (or—another
possibility in the third case—a set cover in fact exists).

Case 1: Exactly k unspecified entries are set to −1, but
the corresponding sets do not cover all of U . Suppose for the
sake of contradiction that there exists an equilibrium entirely
within L. Since there are exactly k sets chosen, Lemma 1
tells us that each player receives exactly zero payoff and that
the row player plays exactly the set of undominated actions,
as reasoned above. But there is some element, say si, that
is not covered, so that for every Sj with si ∈ Sj the row
player does not put any probability on Sj,1. Therefore, the
column player could deviate to si and obtain some strictly



positive payoff, since all entries in rows that are actually
played by the row player are at most zero (with at least one
entry being strictly negative, under the assumption that all
elements are contained in at least one set). Therefore there
does not exist an equilibrium that stays within L, because
the column player would have incentive to deviate.

Case 2: More than k entries, say ` > k entries, are set to
−1. Note that the value of L will be negative, but will be no
less than − 1

2n−k
(the row player could guarantee herself at

least − 1
2n−k

by simply playing every action with probabil-

ity 1
2n−k

). Again suppose that there exists an equilibrium
within L. By the same argument as before, for sufficiently
large H the row player plays Si,1 actions with total probabil-
ity arbitrarily close to `

2n−k
and plays Si,2 actions with total

probability arbitrarily close to n−`
2n−k

. Therefore the payoff
for the column player playing column t is arbitrarily close to

−( `
2n−k

N1 + (n−`)
2n−k

N2) ≥ −( k+1
2n−k

N1 + (n−k−1)
2n−k

N2) > 1
2n−k

,
by the choice of N1 and N2. So the column player can obtain
more payoff by playing t than playing only actions in L.

Case 3: Fewer than k unspecified entries are set to −1.
There are two possibilities. First, the way of setting the
entries corresponds to a set cover. In this case there is nec-
essarily a set cover of size k as well, meaning that M is a
yes instance. Second, the payoffs do not correspond to a
set cover. Then, by the same argument as for Case 1, the
column player can obtain a positive payoff by playing some
action si. Because the row player can guarantee a value
greater than 0 if the game is restricted to L (see Lemma 1),
it follows that the equilibrium is not contained within L.

Together, this shows that the equilibrium can be con-
tained in L if and only if there exists a set cover of size k.

5. WEAK TOURNAMENT GAMES
We now turn to weak tournament games and analyze the

computational complexity of possible and necessary ES win-
ners.

Theorem 2. The possible ES winner problem (in weak
tournament games) is NP-complete.

Proof sketch. Membership in NP is straightforward as
we can guess a completion W ′ of the incomplete weak tour-
nament game and verify that the action is in ES(W ′).

For hardness, we provide a reduction from SAT. Let
ϕ = C1 ∧ . . . ∧ Cm be a Boolean formula in conjunctive
normal form over a finite set V = {v1, . . . , vn} of variables.
We define an incomplete weak tournament Wϕ = (A,�) as
follows.2 The set A of vertices is given by A = ∪n

i=1Xi ∪
{c1, . . . , cm} ∪ {d}, where Xi = {x1i , . . . , x6i } for all i ∈ [n].
Vertex cj corresponds to clause Cj and the set Xi corre-
sponds to variable vi.

Within each set Xi, there is a cycle x1i � x2i � x3i � x4i �
x5i � x6i � x1i and an unspecified edge between x1i and x4i .
If variable vi occurs as a positive literal in clause Cj , we
have edges cj � x3i and x5i � cj . If variable vi occurs as
a negative literal in clause Cj , we have edges cj � x6i and
x2i � cj . Moreover, there is an edge from cj to d for every
j ∈ [m]. For all pairs of vertices for which neither an edge
has been defined, nor an unspecified edge declared, we have
a tie. See Figure 2 for an example.

2We use the notation a � b to denote a directed edge
from a to b.

d c1 c2 c3

x11

x21

x31x41x51

x61

x12

x22

x32x42x52

x62

x13

x23

x33x43x53

x63

Figure 2: Graphical representation of weak tournament
game Wϕ for formula ϕ = C1 ∧ C2 ∧ C3 with C1 =
x1 ∨ ¬x2 ∨ x3. Dashed lines indicate unspecified edges. For
improved readability, edges connecting c2 and c3 to X have
been omitted.

We make two observations about the weak tournament
Wϕ. First, for every completion W of Wϕ, we have d ∈
ES(W ) if and only if ES ∩ {c1, . . . , cm} = ∅. Second, for
each i, there is exactly one unspecified edge within (and thus
exactly three possible completions of) the subtournament
Wϕ|Xi . If the we set a tie between x1i and x4i , then all Nash
equilibria p of the subtournament Wϕ|Xi satisfy p(x1i ) =
p(x3i ) = p(x5i ) and p(x2i ) = p(x4i ) = p(x6i ). If we set x1i �
x4i , then every quasi-strict equilibrium p of Wϕ|Xi satisfies
p(x2i ) = p(x4i ) = p(x6i ) = 0, p(x5i ) > p(x1i ) > p(x3i ) > 0, and
p(x1i )+p(x3i ) > p(x5i ). By symmetry, setting x4i � x1i results
in quasi-strict equilibria p with p(x1i ) = p(x3i ) = p(x5i ) = 0,
p(x4i ) > p(x6i ) > p(x2i ) > 0, and p(x2i ) + p(x6i ) > p(x4i ).

We can now show hat ϕ is satisfiable if and only if there is
a completion W of Wϕ with d ∈ ES(W ). For the direction
from left to right, let α be a satisfying assignment and con-
sider the completion W of Wϕ as follows: if vi is set to true,
under α add edge x1i � x4i ; otherwise, add edge x4i � x1i . It
can be shown that ES(W ) = ∪i∈[n]ES(Xi) ∪ {d}.

For the direction from right to left, let W be a completion
of Wϕ with d ∈ ES(W ). Define the assignment α by setting
variable vi to true if x1i � x4i and to false if x4i � x1i . If
there is a tie between x1i and x4i , we set the truth value
of vi arbitrarily. Since d ∈ ES(W ), we know by the first
observation above that cj /∈ ES(W ) for all j ∈ [m]. It
can now be shown that every ci has an incoming edge from
a vertex in ES(W ), and that this vertex corresponds to a
literal that appears in Ci and that is set to true under α.

We get hardness for the necessary winner problem by
slightly modifying the construction used in the proof above.

Theorem 3. The necessary ES winner problem (in weak
tournament games) is coNP-complete.

It can actually be shown that the problems considered
in Theorems 2 and 3 remain intractable even in the case
where unspecified can be chosen from the continuous interval
[−1, 1] (while still maintaining symmetry).

As discussed in Section 3.4, the necessary ES winner prob-
lem is a special case of the ECP for symmetric matrix games.
Therefore, Theorem 3 implies that (the symmetric version
of) ECP is intractable even in weak tournament games.

Corollary 1. The Equilibrium Containment Problem is
NP-complete in weak tournament games.



6. MIXED-INTEGER PROGRAM FOR
WEAK TOURNAMENT GAMES

Of course, the fact that a problem is NP-hard does not
make it go away; it is still desirable to find algorithms that
scale reasonably well (or very well on natural instances).
NP-hard problems in game theory often allow such algo-
rithms. In particular, formulating the problem as a mixed-
integer program (MIP) and calling a general-purpose solver
often provides good results. Examples include computing
optimal Nash equilibria, which is NP-hard (even to approx-
imate) [11, 9] but for which the MIP approach is quite effec-
tive [20], and computing Stackelberg strategies in Bayesian
games, which again is NP-hard (even to approximate) [8, 16]
but for which again the MIP approach is quite effective [18].
In this section, we give a MIP formulation for the possible
ES winner problem.

6.1 MIP Formulation
Let W = (w(i, j))i,j∈A be an incomplete weak tournament

game. For every entry w(i, j) of W , we define two binary
variables xposij and xnegij . Setting w(i, j) to wij ∈ {−1, 0, 1}
corresponds to setting xposij and xnegij in such a way that
(xposij , xnegij ) 6= (1, 1) and xposij − x

neg
ij = wij . For each action

j, there is a variable pj corresponding to the probability that
the column player assigns to j. Finally, zij is a variable that,
in every feasible solution, equals wijpj .

To determine whether an action k ∈ A is a possible ES
winner of W , we solve the following MIP. Every feasible
solution of this MIP corresponds to a completion of W and
a Nash equilibrium of this completion.

maximize pk

subject to xnegij − x
pos
ji = 0, ∀i, j

xposij + xnegij ≤ 1, ∀i, j

xposij = 1, if w(i, j) = 1

xnegij = 1, if w(i, j) = −1

zij ≥ pj − 2(1− xposij ), ∀i, j

zij ≥ −pj − 2(1− xnegij ), ∀i, j

zij ≥ −2xposij − 2xnegij , ∀i, j∑
j∈A zij ≤ 0, ∀i

xnegij ∈ {0, 1}, ∀i, j

xposij ∈ {0, 1}, ∀i, j∑
j∈A pj = 1

pi ≥ 0, ∀i

Here, indices i and j range over the set A of actions. Most
interesting are the constraints on zij ; we note that exactly
one of the three will be binding depending on the values
of xposij and xnegij . The net effect of these constraints is to
ensure that zij ≥ wijpj . (Since we also have the constraint∑

j∈A zij ≤ 0 and because the value of every completion

is zero, zij = wijpj in every feasible solution.) All other
constraints containing xposij or xnegij are to impose symmetry
and consistency on the entries. The remaining constraints
make sure that p is a well-defined probability distribution
and that no row yields positive payoff for player 1.
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Figure 3: Average runtime (log scale) for n
2

unspecified en-
tries (top) and n unspecified entries (bottom).

6.2 Experimental Results
We tested our MIP on weak tournament games contain-

ing either n
2

or n unspecified entries, where n = |A| is the
number of actions available to each player. For each n, we
examined the average time required to solve 100 random
instances3 of size n, using CPLEX 12.6 to solve the MIP.
Results are shown in Figure 3, with algorithms cut off once
the average time to find a solution exceeds 10 seconds.

We compared the performance of our MIP with a simple
brute force algorithm. The brute force algorithm performs
a depth-first search over the space of all completions, termi-
nating when it finds a certificate of a yes instance or after it
has exhausted all completions. We observe that for even rel-
atively small values of n, the MIP begins to significantly out-
perform the brute-force algorithm. Indeed, it solves random
instance of size 60 in around 2 minutes. However, CPLEX
on the same machine solves completely specified games of
size 1000 in a matter of seconds!

7. CONCLUSION
Often, a designer has some, but limited, control over the

game being played, and wants to exert this control to her
advantage. In this paper, we studied how computationally
hard it is for the designer to decide whether she can choose
payoffs in an incompletely specified game to achieve some

3Random instances were generated by randomly choosing
each entry from {−1, 0, 1} and imposing symmetry, then
randomly choosing the fixed number of entries to be un-
specified.



goal in equilibrium, and found that this is NP-hard even
in quite restricted cases of two-player zero-sum games. Fu-
ture work may address the following questions. Are there
classes of games for which these problems are efficiently solv-
able? Can we extend the MIP approach to broader classes of
games? What results can we obtain for general-sum games?
Note that just as hardness for symmetric zero-sum games
does not imply hardness for zero-sum games in general (be-
cause in the latter the game does not need to be kept sym-
metric), in fact hardness for zero-sum games does not im-
ply hardness for general-sum games (because in the latter
the game does not need to be kept zero-sum). However,
this raises the question of which solution concept should be
used—Nash equilibrium, correlated equilibrium, Stackelberg
mixed strategies, etc. (All of these coincide in two-player
zero-sum games.) All in all, we believe that models where
a designer has limited, but not full, control over the game
are a particularly natural domain of study for AI researchers
and computer scientists in general, due to the problems’ in-
herent computational complexity and potential to address
real-world settings.
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