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ABSTRACT
In bribery an external agent tries to alter the outcome of
an election by changing some voters’ votes. Usually, when
investigating bribery problems, full information is assumed,
i.e., the manipulative agent knows the set of candidates,
each voter’s votes and the voting rule used. In this paper,
we formally introduce different structures of partial infor-
mation, we show the connections between them and existing
notions, define bribery under partial profiles, and examine
the complexity of bribery under partial information for the
k-Approval and Veto.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Economics, Theory

Keywords
computational social choice, voting, algorithms and com-
plexity

1. INTRODUCTION
Voting provides a useful method for collective decision

making and preference aggregation, and such has applica-
tions in politics, economics, and computer science. Usually,
in most of the computer science applications, as for example
in the design of recommender systems [23], planning [16],
machine learning [27], or ranking algorithms [14], we are
dealing with huge data volumes thus it is worth studying
the computational aspects of problems related to voting.
Since the seminal papers of Bartholdi et al. [3, 4, 5], many
have investigated the complexity of voting problems in dif-
ferent settings. Examples for voting problems are the winner
problem, where for a given election we ask whether a distin-
guished candidate is the winner, or problems related to in-
sincere behavior in elections, such as manipulation, bribery,
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and control. In order to make a favorite candidate a win-
ner of an election, in manipulation a group of voters cast
their votes strategically, in bribery, an external agent—the
briber—changes some voters’ votes, and in control, an exter-
nal agent—the chair—changes the structure of the election
(see, e.g., the surveys [6, 20]).

Traditionally, the complexity of voting problems is stud-
ied under the full information assumption, i.e., for instance
in the bribery problem, it is assumed that the briber knows
the set of candidates, the set of voters, each voter’s full pref-
erences over the candidates, and the voting rule used. How-
ever, there are many real-world settings where we simply do
not have full information, for example in some multiagent
systems applications, where agents represent their prefer-
ences via CP-nets [11]. Recently, a number of papers ana-
lyzed the complexity of voting problems under some kind of
uncertainty.

In this paper, we present a systematic study of the com-
plexity of bribery in settings where the briber has only par-
tial information regarding the voters’ preferences. Our main
contributions are:

• We introduce three new notions of partial information.
In addition, we study six notions that have been intro-
duced or suggested by others in the literature.

• We show the connections between the nine notions of
partial information investigated in this paper.

• We analyze the computational complexity of bribery in
k-Approval and Veto under all nine notions of partial
information.

Related Work.
First of all, regarding full information, bribery was in-

troduced and studied by Faliszewski et al. [19], where the
authors investigated the complexity of bribery for Plurality,
Veto, and Approval. The bribery results under full informa-
tion for all k-Approval and k-Veto, for each k ≥ 2, were pub-
lished by Lin [26]. In contrast, we are investigating bribery
in k-Approval and Veto in settings with partial votes.

Our paper fits in the line of research on the complex-
ity analysis of manipulation and winner determination un-
der some kind of uncertainty. The first work we have to
mention here is by Konczak and Lang [25] introducing the
possible/necessary winner problems. In their setting, there
is uncertainty regarding the votes (specified as partial or-
ders), and they ask whether a candidate is a winner in at
least one (possible winner) or in all (necessary winner) pos-
sible extension of the votes to full orders. A probabilistic



variant of the possible/necessary winner problem has been
introduced by Bachrach et al. [2]. Our problem is related
to the possible/necessary winner problems in a sense that
we also consider partial votes with the difference that while
Konczak and Lang consider partial information in a form
of pairwise comparisons, in our work pairwise comparison is
only one type of partial information out of nine we investi-
gate. Furthermore, our problem is specifically related to the
necessary winner problem in a way that we require from the
briber to make his favorite candidate win under all possi-
ble completions. The possible winner problem was further
studied by Xia and Conitzer [28], Betzler and Dorn [10], and
Baumeister and Rothe [9].

Chevaleyre et al. [12] investigated the possible winner prob-
lem in a setting, where the voters specify their preferences
over a set of candidates and after that some new candidates
are added to the election. This setting is basically similar
to our information model 1TOS, where we assume that the
briber knows each voter’s preferences over the same subset
of candidates. The main difference to our paper is, that they
investigate the possible winner problem.

Our work was motivated by Conitzer et al. [13]: in their
model a manipulator has partial information about the votes
and they ask if the manipulator can cast a vote to improve
the outcome of the election. They do not define a special
partial information model, but an information set, which
is the set of all possible profiles that can be achieved by
completing the partial profiles. Basically, their model is a
generalization of all the models considered in this paper.

The possible winner problem for top-truncated, bottom-
truncated, and doubly-truncated (which is a special case of
our information model 1GAP) preferences was investigated
by Baumeister et al. [7]. We will use these preference types
in our paper, details are coming up in Section 3.

We remark that there is a line of research dealing with
uncertainty regarding the voting rule itself [15, 17, 8] but it
is very different from our work.

Organization.
This paper is organized as follows. In Section 2, we recall

some basics from voting theory. In Section 3, we introduce
the models and problems we are considering in our paper
and describe the hierarchy of the partial information models.
The results on the complexity of bribery under our partial
models in k-Approval and Veto are presented in Section 4.
Section 5 concludes the paper.

2. PRELIMINARIES
Formally, an election is defined by a pair E = (C, V )

where C is a finite set of candidates with |C| = m and V is
a finite set of voters. Each voter vi is represented via its pref-
erence order �i over the set of candidates which is a strict
linear order. We will simultaneously use the terms ranking
and preference order. In our constructions, we sometimes
also insert one or more disjunctive subsets A,B ⊆ C into
such preference orders, e.g., A �v c �v B means that voter
v prefers each candidate in A to c and c to each candidate
in B (note that according to transitivity, v prefers each can-
didate in A to each candidate in B). Is the voter clear from
the context, we omit the index v and write c � B instead.−→
B denotes an arbitrary but fixed ordering of the candidates
in B. An n-voter profile P on C consists of n strict linear

orders P = (v1, . . . , vn).
A voting rule E maps election E to a nonempty set W ⊆

C. The candidates in W are said to be the winners of the
election. Throughout this paper, we assume the nonunique-
winner model (i.e., every candidate in W is a winner). We
will consider the following voting rules in this paper.

• In k-Approval, each voter assigns one point to his k top
ranked candidates and gives zero points to all other
candidates. The score of a candidate c, denoted by
score(c), is the sum of points he receives from each
voter. The winners are the candidates with the highest
score. In some proofs, we will use the notion scoreV1(c),
denoting the score of c in V1. 1-Approval is also known
as Plurality.

• In k-Veto each voter gives zero points to his k bottom
ranked candidates and gives one point to each other
candidates. Let vscore(c) denote the number of ve-
toes c gets. The candidates with the lowest number of
vetoes are the winners. We will write Veto for 1-Veto.

Note that while the number of candidates m is not fixed,
k is always fixed. In this paper we suppose that the briber
does not know the n-voter profile P for a given election
E, but has some partial information, a partial profile P ′.
How this partial profile P ′ is represented will be discussed
in Section 3 in detail. Let I(P ′) denote the information set,
which is the set of all complete n-voter profiles which are
not contradicted by P ′.

3. PARTIAL INFORMATION MODELS
In this section we introduce and motivate different types

of partial information models followed by a discussion how
these types relate to each other.

3.1 Types of Partial Information
For each of the types of partial information introduced in

the following we specify the structure of data given and how
the set of potential rankings is specified. We let m = |C|.

I Gaps (GAPS)
Our first partial information model handles the case, where
the briber only knows fractions of each vote, i.e., there are
some blocks in each vote that are fully ranked and there
are some blocks, where the briber knows which candidates
there are in that block, but has no information on how they
are ranked. Examples could be nearly single-peaked elec-
tions [18], where for every candidate at least an approxi-
mate position is known, or cases where the voter is simply
indifferent between alternatives.

Formally, for each vote v we have a partition Cv
1 , . . . , C

v
2m+1

of the set of candidates and a total order for each Cv
k with

k even. Note that possibly Cv
k = ∅ for some k. A ranking

of candidates is in the information set if and only if for each
(c, c′) with c ∈ Cv

k and c′ ∈ Cv
k′ , k′ > k, c is preferred to c′

and candidates in Cv
k , k even, are ranked according to the

total order given for Cv
k .

Note that if Cv
k = Cv

k+1 = ∅ we can drop both partite
sets without changing the information set. Therefore, we
can restrict ourselves to at most 2m + 1 partite sets.



I One Gap (1GAP)
A similar model was introduced by Baumeister et al. [7] as
doubly-truncated preferences, where in each vote there are
subsets of candidates ranked at the top and at the bottom
of the votes, and there is a gap between the top and bottom
ranked candidates. We adopt this notion and extend it in a
way that we allow the top or bottom ranked candidate set
to be empty.

Formally, 1GAP refers to the special case of GAPS with
Cv

k = ∅, for each k ∈ {1, 5, 6, . . . , 2m + 1}, for each voter v.

I Top-truncated Orders (TTO)
TTO was introduced by Baumeister et al. [7] and refers to
the special case of 1GAP where Cv

1 = Cv
4 = . . . = Cv

2m+1 = ∅
for each voter v.

I Bottom-truncated Orders (BTO)
BTO was also introduced by Baumeister et al. [7] and refers
to the special case of 1GAP where Cv

3 = . . . = Cv
2m+1 = ∅

for each voter v.

I Complete or empty votes (CEV)
As suggested by Konczak and Lang [25], we introduce CEV
as a special case of TTO with either Cv

2 = ∅ or Cv
3 = ∅

for each voter v. Note that this is equivalent to the special
case of BTO with either Cv

1 = ∅ or Cv
2 = ∅ for each voter

v. An example for this model is the case, where new voters
join the election from whom the briber has absolutely no
information.

I Fixed Positions (FP)
For each vote v we have a subset of candidates Cv with
distinct positions in range between 1 and m assigned. A
ranking of candidates is in the information set if and only if
each candidate in Cv has the assigned position. An example
for this model is the case, where there are three candidates
c1, c2, and c3. Candidates c1 and c3 have clearly opposing
properties such that each voter prefers either favors c1 most
and c3 least or the other way round. Candidate c2 is fixed
to position 2, then.

I Pairwise Comparisons (PC)
PC is probably the most natural way of displaying par-
tial preferences. It has been introduced by Konczak and
Lang [25] and has been used in many papers since. For-
mally, for each vote v we have a subset Πv of C × C. A
ranking of candidates is in the information set if and only if
for each (c, c′) ∈ Πv c is preferred to c′.

Note that we may restrict Πv to be anti-symmetric and
transitive for matters of convenience.

I Totally Ordered Subset of Candidates (TOS)
For each voter the briber has the information in a form of
a totally ordered subset (for each voter a possibly different
subset). Such information can emerge for example in senti-
ment analysis [24], where the briber can extract information
from each voter’s previous comments or behavior (for exam-
ple at giving scores for products bought on ebay). Formally,
for each vote v we have a subset Cv of candidates and a total
order for Cv. A ranking of candidates is in the information
set if and only if c is preferred to c′ for each pair of candi-
dates (c, c′) with c, c′ ∈ Ck and c is preferred to c′ according

to the given order.

I Unique Totally Ordered Subset of Candidates (1TOS)
1TOS was first suggested by Konczak and Lang [25] and
formally defined by Chevaleyre et al. [12]. 1TOS refers to
the special case of TOS where Cv = C′ for each voter v
with C′ ⊆ C. A natural example here would be the addition
of candidates to an election. The briber knows the voters’
preferences over the old candidates, but has no information
on how the voters would rank the new ones.

3.2 Problem Definitions
Let X = {GAPS, 1GAP,TTO,BTO,CEV,FP,PC,TOS,

1TOS}. In the classic bribery problems (with full informa-
tion about votes and a voting rule given) the question is
whether a briber can change a given number of votes such
that his favorite candidate is a winner. We carry over this
idea to partial information models.

E-X-Bribery

Given: An election (C, V ), a designated candidate c ∈
C, a non-negative integer ` and partial profile P
according to model X.

Question: Is it possible to make c a winner of the elec-
tion under E for each complete profile in I(P )
by changing up to ` votes?

Note that we leave open in the definition whether the
changed votes are fully specified or according to X. How-
ever, it is rather easy to see that a fully specified vote is
according to each partial information model in X and we
can restrict ourselves to fully specified bribed votes: If there
is a vote with partial information then each preference order
in the information set can be chosen.

3.3 Hierarchy
Theorem 3.1 shows the relations between the partial in-

formation models discussed in this paper.

Theorem 3.1. The following relations hold:

(1) 1TOS ( TOS. (6) BTO ( 1GAP.

(2) CEV ( TOS. (7) 1GAP ( GAPS.

(3) CEV ( TTO. (8) 1GAP ( FP.

(4) CEV ( BTO. (9) TOS ( PC.

(5) TTO ( 1GAP. (10) GAPS ( PC.

This list is complete in the following sense: Relations that
are not listed here and that do not follow from transitivity
do not hold in general. The relationship of the partial infor-
mation models is displayed in Figure 1 as a Hasse diagram.

Proof. We will prove the ten relations first, following
by points 11-15 showing incomparability for the remain-
ing cases. Results following immediately from definitions
or transitivity are not mentioned explicitly.

1. 1TOS ( TOS: We have 1TOS 6⊃ TOS because every
voter ranks an individual subset of candidates in gen-
eral.

2. CEV ( TOS: Partial information according to CEV
can be represented by partial information according to
TOS with Cv = C or Cv = ∅ for each voter v.
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TOS GAPS

1GAP

FP

1TOS

BTO TTO

CEV

Full Information

Figure 1: Hasse diagram

The reverse direction is not true in general since Cv 6=
∅, Cv 6= C cannot be represented in CEV.

3. CEV ( TTO: We have CEV 6⊃ TTO since Cv
1 = ∅,

Cv
2 6= ∅, Cv

3 6= ∅ cannot be represented in CEV.

4. CEV ( BTO: We have CEV 6⊃ BTO since Cv
1 6= ∅,

Cv
2 6= ∅ cannot be represented in CEV.

5. TTO ( 1GAP: We have TTO 6⊃ 1GAP since Cv
1 = ∅,

Cv
2 6= ∅, Cv

3 6= ∅, Cv
4 6= ∅ cannot be represented in

TTO.

6. BTO ( 1GAP: The same example as for TTO 6⊃ 1GAP
shows that BTO 6⊃ 1GAP.

7. 1GAP ( GAPS: We have 1GAP 6⊃ GAPS since Cv
1 6=

∅, Cv
2 6= ∅, Cv

3 6= ∅ cannot be represented in 1GAP.

8. 1GAP ( FP: It easy to see that for each candidate in
Cv

2 ∪ Cv
4 a unique position is implied by partial infor-

mation according to 1GAP.

The reverse direction is not true in general since partial
information with only position 2 assigned to a candi-
date cannot be represented in 1GAP if we have more
than two candidates.

9. TOS ( PC: Let Cv(l) denote the l-most preferred can-
didate within Cv according to the partial information
of type TOS. We can represent the information set
by I(v) = {(Cv(l), Cv(l)) | 1 ≤ l ≤ |Cv| − 1} as par-
tial information according to type PC.

The reverse direction is not true in general since par-
tial information I(v) = {(c1, c2) , (c3, c4)} cannot be
represented in TOS.

10. GAPS ( PC: Let Cv
k (l) denote the l-most preferred

candidate within Cv
k according to the partial infor-

mation of type TOS for each even k. We can rep-
resent the information set by I(v) = I1(v) ∪ I2(v)

where I1(v) = {(c, c′) | c ∈ Cv
k , c
′ ∈ Cv

k+1, k < 2m + 1}
and I2(v) = {(Cv

k (l), Cv
k (l)) | 1 ≤ l ≤ |Cv

k | − 1, k even}
as partial information according to type PC.

The reverse direction is not true in general since partial
information I(v) = {(c1, c2)} cannot be represented if
we have more than two candidates.

11. FP is incomparable to PC, GAPS, TOS, 1TOS:
GAPS 6⊂ FP since Cv

1 = {c1, c2}, Cv
2 = {c3}, Cv

3 =
{c4, c5} cannot be represented in FP. FP 6⊂ PC since
partial information with only position 2 assigned to
a candidate cannot be represented in PC if we have
more than two candidates. 1TOS 6⊂ FP since partial
information C′ ⊂ C and the associated order cannot
be represented in FP. The remaining statements follow
immediately.

12. GAPS is incomparable to TOS, 1TOS: GAPS 6⊂ TOS
since Cv

k = ∅ for each k > 2, Cv
1 6= ∅ and Cv

2 6= ∅
cannot be represented in TOS. 1TOS 6⊂ GAPS since
partial information C′ ⊂ C and the associated order
cannot be represented in GAPS. The remaining state-
ments follow immediately.

13. TOS is incomparable to 1GAP, BTO, TTO: TOS 6⊂
1GAP since 1TOS 6⊂ GAPS. BTO 6⊂ TOS since |Cv

2 | =
1 cannot be represented in TOS. TTO 6⊂ TOS since
|Cv

2 | = 1 cannot be represented in TOS. The remaining
statements follow immediately.

14. 1TOS is incomparable to 1GAP, BTO, TTO, CEV:
CEV 6⊂ 1TOS since two votes with full and no infor-
mation at all cannot be represented simultaneously.
1TOS 6⊂ 1GAP since 1TOS 6⊂ GAPS. The remaining
statements follow immediately.

15. TTO and BTO are incomparable: TTO 6⊂ BTO since
2 ≤ |Cv

2 | ≤ |C| − 2 cannot be represented. BTO 6⊂
TTO since 2 ≤ |Cv

2 | ≤ |C| − 2 cannot be represented.

q

4. COMPLEXITY RESULTS
Under full information, bribery in most of the prominent

voting rules is NP-hard, thus the same holds for bribery
under all partial information models. However, under full
information, bribery is in P for k-Approval, for all k ≤ 2,
and for k-Veto, for all k ≤ 3. Table 4.1 shows the results
on the complexity of bribery under partial information in k-
Approval and k-Veto. Column FI displays the results for the
case with full information due to Faliszewski et al. [19] and
Lin [26]. Results in italic are hardness results that follow
from already existing hardness results for full information.
Results in boldface are new.

In this section we will provide the proofs for these re-
sults. In some proofs we will use the notion pscore(d) (or
pvscore(d)), which stands for possible score (or possible ve-
toes) and is the number of approvals (or vetoes) a candidate
d gets if we consider the ranking in each voter’s information
set that is best possible for d with respect to maximization of
score (or that is worst possible with respect to minimization
of the number of vetoes).

In each NP-hardness proof in this paper we will provide
a reduction from the NP-complete problem Exact Cover
By 3-Sets (X3C, for short) [22] which is defined as follows.



Exact Cover By 3-Sets

Given: A set B with |B| = 3q and a collection S of 3-
element subsets of B.

Question: Does S contain an exact cover for B (i.e., a sub-
collection S′ ⊆ S such that every element of B
occurs in exactly one member of S′)?

Membership in NP is trivial, we will not mention this in
the proofs.

4.1 k-Approval Bribery
As bribery is already hard to solve for many voting rules

under full information, bribery under partial information in-
herits the NP-hardness of bribery under full information
(this holds, e.g., for Borda, Maximin, Approval). Thus we
only have to regard those voting rules for which bribery can
be solved in polynomial time under full information.

4.1.1 Plurality

Theorem 4.1. Plurality-X-Bribery is NP-complete for
X ∈ {Gaps, 1Gap,FP,TOS,PC,BTO}.

Proof. In order to prove NP-hardness, we give a reduction
from X3C. To do so, we first give a construction for the
reduction, and at the end of the proof we show that the
existence of a successful bribery is equivalent to the existence
of an exact cover. We prove this only for the structures TOS
and BTO. All the remaining structures in X inherit the NP-
hardness lower bound from TOS or BTO, as these two are
special cases of all the other given structures in X. We will
describe the construction for BTO in detail first.

Given an X3C instance (B,S), where B = {b1, . . . , b3m}
and S = {S1, . . . , Sn}, construct the following bribery in-
stance. The candidate set is C = B ∪ {c} and c is the
distinguished candidate. The bribery limit is m. The set of
voters V consists of the following 3mn + 2m − n voters of
the form:

1. For each i, 1 ≤ i ≤ n, there is one voter vi of the form

Si �
−−−−→
C \ Si. So, we have Cvi

1 = Si and Cvi
2 = C \ Si.

2. For each j, 1 ≤ j ≤ 3m, there are n + 1 − `j voters

of the form bj �
−−−−−→
C \ {bj}, where `j = |{Si| bj ∈ Si}|,

for all j, 1 ≤ j ≤ 3m. Note that these votes are
basically complete votes, and since full information is
a special case of every structure defined in this paper,
these votes can be represented in both structures TOS
and BTO.

3. There are n−m voters of the form c �
−−−−→
C \ {c}.

Note that score(c) = n−m and pscore(bj) = n+1, for all
j, 1 ≤ j ≤ 3m. We claim that there exists an exact cover
of three-sets if and only if c can be made a winner of the
election in all completions.

(⇒) Assume there is an exact cover S ′ ⊆ S. Changing the
corresponding votes in the first voter group such, that the
top-ranked candidate in those votes is c makes c a winner
under all possible profiles (after the bribery, score(c) = n
and pscore(bj) = n, for all j, 1 ≤ j ≤ 3m, thus, there exists
no candidate who could beat the distinguished candidate c).

(⇐) Assume c can be made a winner of the election in all
possible completions by bribing at most m voters. Since c

cannot reach the score of n + 1, each bj has to lose at least
a certain or possible point. This is only possible, if these m
votes cover 3m candidates, and thus possible points. This,
however, is only possible if the bribed voters cover exactly B.

The construction and argumentation is similar for TOS
with a slight modification in the representation of the votes
in voter set (1). We assume that Si = {bi1 , bi2 , bi3} denotes
the set of possible winner candidates of the given vote vi
and the remaining candidates are excluded from winning
this vote. We set C′vi = {bi1} ∪ (C \ Si) as the given totally

ordered subset of candidates and let bi1 �
−−−−→
C \ Si. This

makes sure that exactly the candidates of Si are the possible
scorers of the vote vi. q

Bribery under the remaining structures is easy in Plurality.
In the following, we will provide two polynomial-time algo-
rithms for these structures.

Theorem 4.2. Plurality-TTO-Bribery is in P.

Proof. Let Ve denote the set of voters having an empty
top set, that is Ve = {v | Cv

2 = ∅}. The voters in V \ Ve

have declared their favorite candidate uniquely. It is easy
to see that we will not bribe votes definitely favoring c and
that bribed votes will favor c. Hence, we have score(c) =
scoreV \Ve(c)+` and pscore(d) = scoreV \Ve(d)+|Ve|−`d−`e
after the bribery where `d is the number of bribed votes in
V \ Ve that favored d and `e is the number of bribed votes
in Ve.

We can make c a winner if we reach score(c) ≥ pscore(d)
for each d 6= c while `e +

∑
d∈C,d 6=c `d ≤ l.

Since bribing a vote in Ve is just as costly as bribing any
other vote but reduces pscore(d) by one for each candidate
d 6= c it is a dominant strategy to bribe min {`, |Ve|} votes
in Ve.

If ` ≤ |Ve| bribing is done and we can easily check whether
it was successful. If ` > |Ve| it remains to decide which `−
|Ve| additional votes in V \Ve to bribe. This decision problem
can be reduced to Plurality-Bribery under full information
which is known to be in P, see [19].

We consider the election (C, (V \ Ve) ∪ V ′e ) where V ′e is a
set of |Ve| votes favoring c (representing the bribed votes in
Ve). The bribing limit is reduced to `− |Ve| since this is the
number of votes which can be bribed additional.

To be more precise here, we have to consider the set
of votes V ′e implicitly since otherwise the construction of
the new election (C, (V \ Ve)∪ V ′e ) takes pseudo-polynomial
time. However, this can be done easily (simply by increasing
score(c) by |Ve| explicitly in the algorithm of [19]). q

Note that Theorem 4.2 implies that Plurality-CEV-Bribery
is in P.

Theorem 4.3. Plurality-1TOS-Bribery is in P.

Proof. If C′ = C we have the case of bribery under full
information which is in P, see [19]. We consider the case
C′ ( C, therefore, in the following. It is easy to see that
bribed votes will favor c. We can make c a winner if we
reach score(c) ≥ pscore(d) for each d 6= c after bribing no
more than ` votes. We distinguish two cases.

1. If C \C′ \ {c} 6= ∅, that is C \C′ contains a candidate
d, d 6= c, we have score(c) = 0 before the bribery and



Voting rule FI Gaps FP TOS PC CEV 1TOS 1Gap TTO BTO
Plurality P NPC NPC NPC NPC P P NPC P NPC
2-Approval P NPC NPC NPC NPC P P NPC P NPC
(≥ 3)-Approval NPC NPC NPC NPC NPC NPC NPC NPC NPC NPC
Veto P P P P P P P P P P
(≥ 4)-Veto NPC NPC NPC NPC NPC NPC NPC NPC NPC NPC

Table 1: Summary of the complexity results.

score(c) = ` after the bribery since each original vote
has potential favorite candidate d. Since pscore(d) =
|V |−` after the bribery we need ` ≥ |V |/2. Obviously,
` ≥ |V |/2 is also sufficient since no candidate e 6∈ {c, d}
can have pscore(e) ≥ |V |/2 after bribing at least |V |/2
and giving their points to c.

2. If C\C′ = {c} we can easily determine pscore(d) before
the bribery for each candidate d 6= c. Again, we have
score(c) = ` after the bribery. Note that we reduce
pscore(d) by one when bribing a vote where d is the
top candidate in C′. Therefore, c can be made a winner
if and only

` ≥
∑
d∈C′

max{0, pscore(d)− `}.

Moreover, for each d 6= c we can easily determine the
votes to be bribed by choosing max{0, score(C′,V )(d)−
`} arbitrary votes having d as favorite candidate in C′.

q

4.1.2 2-Approval

Theorem 4.4. 2-Approval-X-Bribery is NP-complete for
X ∈ {Gaps, 1Gap,FP,TOS,PC,BTO}.

Proof. It suffices to show hardness only for X ∈ {TOS,
BTO}. In order to prove NP-hardness, we give a reduction
from X3C. To do so, we first give a construction for the re-
duction, and then we argue that the existence of a successful
bribery is equivalent to the existence of an exact cover. We
first show the proof for the BTO structure and will describe
the necessary small changes for the TOS structure at the
end of the proof.

Given an X3C instance (B,S), where B = {b1, . . . , b3m}
and S = {S1, . . . , Sn}, construct the following bribery in-
stance. The candidate set is

C = B ∪ {c} ∪ {d1, . . . , d3mn+2m−2n}

and c is the distinguished candidate. The bribery limit is m.
The set of voters V consists of the following 3mn + 2m− n
voters of the form:

1. For each i, 1 ≤ i ≤ n, there is one voter vi with Cvi
1 =

Si and Cvi
2 = C \ Si.

2. For each j, 1 ≤ j ≤ 3m, there are n+1−`j voters who
approve of bj and exactly one of the dummy candidates
dk, 1 ≤ k ≤ 3mn+3m−3n, where `j = |{Si| bj ∈ Si}|,
for all j, 1 ≤ j ≤ 3m. The other candidates are ranked
behind them in arbitrary, but fixed order. As these
votes are complete, they can be written in terms of
BTO.

3. There are n−m voters of the form approving of c and
a dummy candidate dk, 3mn + 3m − 3n + 1 ≤ k ≤
3mn + 2m− 2n. These votes are complete too.

Note that score(c) = n −m and pscore(bj) = n + 1, for
all j, 1 ≤ j ≤ 3m. For the dummy candidates, we have
pscore(dk) = 1, 1 ≤ k ≤ 3mn + 2m − 2n. We claim that
there exists an exact cover of three-sets if and only if c can
be made a winner of the election in all possible profiles.

(⇒) Assume there is an exact cover S ′. Changing the
corresponding votes in the first voter group such, that the
top-ranked candidate in those votes is c makes c a winner
under all possible completions. After the bribery, score(c) =
n and pscore(bj) = n, for all j, 1 ≤ j ≤ 3m, thus, there
exists no candidate who beats the distinguished candidate c.

(⇐) Assume c can be made a winner of the election in all
possible completions by bribing at most m voters. Since c
cannot reach the score of n + 1, each bj has to lose at least
a certain or possible point. This is only possible, if these m
votes cover 3m candidates from B, and thus possible points.
This, however, is only possible if the bribed voters belong to
voter set 1 and cover exactly B.

Under the TOS structure, voter groups 2 and 3 can be
left unchanged, since those votes are complete. For the first
voter group, we define the voters vi, 1 ≤ i ≤ n, in the
following way: We set Si = {bi1 , bi2 , bi3} and the vote vi is

represented by the totally ordered subset bi1 � bi2 �
−−−−→
C \ Si.

This way, exactly the candidates from Si are the possibly
but not definitely approved candidates in this vote. The
remaining candidates are excluded from being approved by
this voter. It is easy to verify, that the scores are identical
to the BTO case, and the argumentation is similar too. q

In the remaining cases for 2-Approval we will reduce our
problems to Capacitated b-Matching which is in P [1,
21]:

Capacitated b-Matching

Given: A weighted graph G = (V,E, {cij}, {bi}), where
bi is the capacity of vertex i and cij is the ca-
pacity of edge (i, j). All bi and cij are integers.
Furthermore, an integer K.

Question: Does G have a capacitated b-matching (i.e., is yij
the number of times edge (i, j) is selected, then∑

j:(i,j)∈E yij ≤ bi for all i and yij ≤ cij for each

(i, j) ∈ E) with
∑

(i,j)∈E yij ≥ K?

Theorem 4.5. 2-Approval-TTO-Bribery is in P.

Proof. Let V 0 denote the set of voters having an empty
top set, that is V 0 = {v | Cv

2 = ∅}. Furthermore, let V 1
c =

{v | Cv
2 = {c}}, let V 1 = {v | |Cv

2 | = 1, c 6∈ Cv
2 }, let V 2

c =
{v | |Cv

2 | ≥ 2, c ∈ Cv
2 }, and let V 2 = {v | |Cv

2 | ≥ 2, c 6∈ Cv
2 }.

We can make c a winner if we reach score(c) ≥ pscore(d) for
each d 6= c after bribing no more than ` votes.



It is easy to see that bribed votes will have c among the
two most favored candidates. We first detail what we gain
from bribing (and changing) a certain vote.

• Bribing a vote in V 2
c we can reduce the difference of

score(c) and pscore(d) by one (for d being the former
other top candidate) and we increase the difference
by one for one candidate (which we can choose freely
among the former losers).

• Bribing a vote in V 2 we can

– either reduce the difference for one of the former
two top candidates by two and for the remaining
candidates by one or

– reduce the difference for both former two top can-
didates by two, do not change the difference for
one of the former losers (which can choose freely),
and increase it for the remaining candidates by
one.

• Bribing a vote in V 1
c we do not change the difference

for one candidate (which we can choose freely) and
reduce it for the remaining candidates by one.

• Bribing a vote in V 1 we reduce the difference for one
candidate (which we can choose freely) by one and
reduce it for the remaining candidates by two.

• Bribing a vote in V 0 we reduce the difference for one
candidate (which we can choose freely) by one and
reduce it for the remaining candidates by two.

Now we can see that bribing any vote in V 0 ∪ V 1 ∪ V 2

where we can ensure that the difference is reduced by at
least one for each candidate is dominant to bribing any vote
in V 1

c ∪ V 2
c where we yield a reduction of at most one per

candidate. Hence, we may assume that votes in V 1
c ∪V 2

c will
not be bribed at all since c is a winner if all other votes are
bribed. Furthermore, we see that bribing any vote in V 0∪V 1

where we can ensure that the difference is reduced by two
for each candidate but one (which we can choose freely) is
dominant to bribing any vote in V 2. Now, we distinguish
three cases.

1. If ` ≥ |V 0 ∪ V 1 ∪ V 2| we simply bribe all votes in
V 0 ∪ V 1 ∪ V 2 and c is a winner.

2. If ` ≤ |V 0 ∪V 1| we bribe ` arbitrary votes in V 0 ∪V 1.
We determine pscore(d) for each candidate d 6= c be-
fore the bribery, reduce it by ` in order to account
for the bribed votes, and construct the bribed votes
one by one as follows. We give c the top position and
the second position goes to one of the candidates hav-
ing currently the lowest pscore(d). It is easy to see
that this procedure keeps the maximum pscore(d) af-
ter the bribery as low as possible. Checking whether
score(c) ≥ pscore(d) for each candidate d 6= c gives us
a certificate for a successful bribery or for the fact that
c cannot be made a winner

3. If |V 0 ∪V 1 ∪V 2| > ` > |V 0 ∪V 1| we bribe all votes in
V 0 ∪ V 1 and `− |V 0 ∪ V 1| votes in V 2. This gives us
score(c) = |V 1

c ∪ V 2
c |+ ` after the bribery.

After the bribery, we have for d 6= c, pscore(d) =
pscoreV 1

c ∪V 2
c

(d) + score V̄ 2(d) + bd, where V̄ 2 is the set

of votes in V 2 not bribed and bd is the number of points
given to d by bribed votes.

Note that there are ` points from bribed votes that we
can distribute to candidates except c arbitrarily.

Hence, what we ask for is a set V̄ 2 of |V 0∪V 1∪V 2|−`
votes in V 2 not to be bribed such that each candidate
d 6= c has pscoreV 1

c ∪V 2
c

(d) + score V̄ 2(d) ≤ |V 1
c ∪ V 2

c |+
`. Note that pscoreV 1

c ∪V 2
c

(d) + score V̄ 2(d) can be de-
scribed as the pscore value for each d 6= c without
accounting for the ` points from bribed votes.

We find V̄ 2 employing graph G = (V,E) as follows.
We have V = C \ {c}. Furthermore, we have the set
of edges

E =
{
{d, d′} | d, d′ ∈ C \ {c}, d 6= d′

}
.

Each edge e = {d, d′} has capacity ue of the multiplic-
ity with which d and d′ appear as first two candidates
(in arbitrary order) in a vote in V 2. Each node d has
a capacity of

(
|V 1

c ∪ V 2
c |+ `

)
− pscoreV 1

c ∪V 2
c

(d). We
ask for a capacitated b-matching of maximum cardi-
nality. If the cardinality of this matching is at least
|V 0 ∪ V 1 ∪ V 2| − ` we keep |V 0 ∪ V 1 ∪ V 2| − ` ar-
bitrary votes corresponding to edges in the matching
and bribe the remaining ones. Otherwise, we cannot
make c a winner.

If we succeeded in finding V̄ 2, then it remains to dis-
tribute the ` points from bribed votes to the candidates
such that each candidate d 6= c has pscoreV 1

c ∪V 2
c

(d) +

score V̄ 2(d) + bd ≤ |V 1
c ∪ V 2

c | + `. The latter can be
done – if possible at all – by the same mechanism as
in 2. Note that given that votes in V 1

c ∪ V 2
c are not

bribed and we bribe exactly ` votes, the total pscore
value after bribery amounts to∑

d6=c

(
pscoreV 1

c ∪V 2
c

(d) + score V̄ 2(d) + bd
)

and is a constant. If we succeeded also in distributing
the ` points from bribed votes we make c a winner. If
we did not, we cannot make c a winner.

q

Note that Theorem 4.5 implies that 2-Approval-CEV-Bri-
bery is in P.

Theorem 4.6. 2-Approval-1TOS-Bribery is in P.

Proof. As before, we can make c a winner if we reach
score(c) ≥ pscore(d) for each d 6= c after bribing no more
than ` votes. Obviously, a bribed vote will have c among the
two top candidates. We assume that C′ 6= C since otherwise
we have full information and the problem can be solved in
polynomial time, see [19]. We distinguish three cases.

1. If c 6∈ C′, then score(c) = 0 before the bribery and
score(c) = ` afterwards. Each candidate d ∈ C \ C′,
d 6= c, has pscore(d) = |V | before the bribery and at
least pscore(d) = |V | − ` afterwards. Hence, if |C \
C′| ≥ 2 and ` < |V |/2, c cannot be made a winner.

If |C \C′| = 1 or ` ≥ |V |/2 we find a set of votes not to
be bribed as follows. We construct a graph G = (V,E).



We have V = C \ {c}. Furthermore, we have the set
of edges

E =
{
{d, d′} | d, d′ ∈ C′, d 6= d′

}
.

Each edge e = {d, d′} has capacity ue of the multi-
plicity with which d and d′ appear as the first two
candidates (in arbitrary order) in C′ in a vote. Each
node d has a capacity of `. We ask for a capacitated
b-matching of maximum cardinality. If the cardinality
of this matching is at least |V | − ` we keep |V | − ` ar-
bitrary votes corresponding to edges in the matching
and bribe the remaining ones. Otherwise, we cannot
make c a winner. It remains to detail how to set bribed
votes. We distribute the points to be given to candi-
dates other than c by the same mechanism as used in
the proof of Theorem 4.5.

2. If c ∈ C′ and |C \ C′| ≥ 2, then score(c) = 0 be-
fore the bribery and score(c) = ` afterwards. Again, if
` < |V |/2, c cannot be made a winner. If ` ≥ |V |/2 we
find a set of votes not to be bribed by using a similar
graph as in 1. However, we also have c as a node with
infinite capacity. Edges are constructed just as in 1.
Again, we ask for a capacitated b-matching of maxi-
mum cardinality. If the cardinality of this matching
is at least |V | − ` we are done. We keep |V | − ` ar-
bitrary votes corresponding to edges in the matching
and bribe the remaining ones. Otherwise, we cannot
make c a winner. Bribed votes are set as in 1.

3. If c ∈ C′ and |C \ C′| = 1, let Vc be the set of votes
where c has the first position within C′. We can see
that by bribing a vote in Vc, we reduce the difference
between score(c) and pscore(d) for each candidate d 6=
c by at most one while we reduce it by at least one
bribing a vote in V \ Vc. If ` ≥ |V \ Vc|, then we can
make c a winner easily by bribing all votes in V \ Vc.
If ` < |V \Vc| we bribe only votes in V \Vc. Therefore,
score(c) = |Vc| before the bribery and score(c) = |Vc|+
` afterwards. After the bribery we have pscore(d) ≥
|V | − ` for d ∈ C \ C′. Hence, if ` < d|V \ Vc|/2e, c
cannot be made a winner.

If ` ≥ d|V \ Vc|/2e we find a set of votes not to be
bribed by using a similar graph as in 2. However, node
d, d 6= c, has capacity of |Vc|+ `. Again, we ask for a
capacitated b-matching of maximum cardinality. If the
cardinality of this matching is at least |V | − ` we are
done. We keep |V |−` arbitrary votes corresponding to
edges in the matching and bribe the remaining ones.
Otherwise, we cannot make c a winner. Bribed votes
are set as in 1. and 2.

q

4.2 Veto Bribery

Theorem 4.7. Veto-FP-Bribery is in P.

Proof. In case there is a vote with m− 1 fixed positions
we fix the last position, as well. Henceforth, we assume that
there are no votes with exactly m− 1 fixed positions in the
following.

Let Vc be the set of votes where either c is fixed to the last
position or c is not fixed to any position and no candidate is
fixed to the last position. We then have pvscore(c) = |Vc| be-
fore the bribery. Furthermore, before the bribery vscore(d)
equals the number of votes where d is fixed to the last posi-
tion. We can make c a winner if pvscore(c) ≤ vscore(d) for
each d 6= c after the bribery.

Obviously, a bribed vote will not have c on the last po-
sition. We can see that bribing a vote in Vc we reduce the
difference between vscore(d) and pvscore(c) for each candi-
date d 6= c by at least one while we reduce it by at most
one bribing a vote in V \ Vc. Hence, if ` ≥ Vc we simply
bribe all votes in Vc. We assume, therefore, that ` < Vc

in the following. We bribe only votes in Vc and we have
pvscore(c) = |Vc| − ` after the bribery. Bribing a vote we
are free whom to give the veto to. Hence, we can make c a
winner if and only if

` ≥
∑

d∈C\{c}

max{0, pvscore(c)− `− vscore(d)}.

q

Theorem 4.8. Veto-PC-Bribery is in P.

Proof. The proof is analogue to the one for Theorem 4.7.
The only difference is how vscore(d) and pvscore(c) are de-
termined. Let Lv be the set of candidates who may get
a veto by voter v, that is Lv = {d |6 ∃e ∈ C, (d, e) ∈ Π}.
Now we have pvscore(c) = | {v | c ∈ Lv} | and vscore(d) =
| {v | Lv = {d}} |. q

Note that Theorems 4.7 and 4.8 imply that Veto-X-Bribe-
ry is in P for X ∈ {Gaps, 1Gap,FP,TOS,PC,CEV, 1TOS,
TTO,BTO}.

5. CONCLUSIONS
We have introduced three new partial information mod-

els (Gaps, Fixed Positions, and Totally Ordered Subsets of
Candidates) and studied six known models. We have shown
the relations of all nine partial information models discussed
in this paper. Furthermore, we have defined bribery under
partial information and investigated the complexity of this
problem under k-Approval and Veto. We refer the reader
to Table 4.1 for an overview. The first open questions here
are the complexity of bribery under all partial information
models under the voting rules 2-Veto and 3-Veto. Second,
we could define bribery in the sense of the possible winner
problem, i.e., the briber’s goal would be to make his favorite
candidate a winner in at least one completion.

Another interesting direction is investigating the complex-
ity of manipulation, control and dominating manipulation
(as introduced in [13]) under these partial models. Fur-
thermore, motivated by dominating manipulation, one could
define dominating bribery under partial information as the
problem, where an election, a partial profile, the briber’s
preference order, and a nonnegative integer ` are given and
the question is whether the briber can achieve a better out-
come by bribing at most ` voters.
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