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ABSTRACT
We study equilibrium dynamics in candidacy games, in which candidates
may strategically decide to enter the election or withdraw their candidacy,
following their own preferences over possible outcomes. Focusing on games
under Plurality, we extend the standard model to allow for situations where
voters may refuse to return their votes to those candidates who had previ-
ously left the election, should they decide to run again. We show that if
at the time when a candidate withdraws his candidacy, with some positive
probability each voter takes this candidate out of his future consideration,
the process converges with probability 1. This is in sharp contrast with
the original model where the very existence of a Nash equilibrium is not
guaranteed. We then consider the two extreme cases of this setting, where
voters may block a withdrawn candidate with probabilities 0 or 1. In these
scenarios, we study the complexity of reaching equilibria from a given ini-
tial point, converging to an equilibrium with a predetermined winner or to
an equilibrium with a given set of running candidates. Except for one easy
case, we show that these problems are NP-complete, even when the initial
point is fixed to a natural—truthful—state where all potential candidates
stand for election.

1. INTRODUCTION
The number of situations where people—and more recently, elec-
tronic agents—use voting mechanisms to make collective decisions,
is hard to overestimate. Indeed, they get to vote in political elec-
tions on different levels, in selecting committees in professional
and other organizations, choosing winners of various competitions,
rating services and products they had consumed, scheduling meet-
ings, allocating resources and planning joint actions, as well as ex-
pressing their opinion on all possible matters in surveys and polls.

Notoriously, most voting mechanisms (a.k.a. rules) are suscep-
tible to various sorts of strategic behavior, shown either by voters
misreporting their preferences (manipulation) or by a third party,
typically the chair, trying to control the sets of voters or candidates
(voter/candidate control, cloning), influence the votes (bribery and
lobbying) or affect the voting rule (agenda control). Finally, the
candidates themselves may also have preferences about the out-
come of the election and try to affect it by strategically choosing
whether to stand for election or not. This latter issue of strategic
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candidacy we address in our work.
Most of the literature in computational social choice, though, fo-

cuses on strategic behaviors by voters and, in particular, on evaluat-
ing voting rules by their resistance to such behaviors, using compu-
tational complexity as a barrier to them (see, e.g., [6] for a survey of
these works). Another natural approach is to analyse voting scenar-
ios from a game-theoretic perspective, viewing strategic parties as
players and examining possible stable outcomes of their interaction
(i.e., Nash equilibria).

However, even though the first model for games with strategic
voters dates back to the 1960’s [7], this line of research only in re-
cent decades has received serious attention in the algorithmic game
theory and the social choice communities. A few works, in particu-
lar, consider Plurality voting games, characterizing their Nash equi-
libria (although under the restrictive assumption of single-peaked
preferences) [8], and examining their dominant strategy equilib-
ria [3]. In [12], the authors suggest a variation of a strong equi-
librium and explore conditions for its existence and uniqueness.
The most relevant to our work, however, is the paper by Meir et
al. [11] that studies equilibrium dynamics, based on myopic im-
proving moves by single voters. The authors, in particular, demon-
strate that convergence to equilibrium is guaranteed from any initial
state, if players choose their best possible moves at every step and
ties are broken lexicographically.

The literature on strategic candidacy is even more scarce. It starts
with the works by Dutta et al. [4, 5], who formulate the game and
show that no reasonable (i.e., non-dictatorial and unanimous) vot-
ing rule can guarantee stability of the truthful1 state where all can-
didates enter the election. The authors also demonstrate examples
of voting trees, where candidacy games may have no pure strategy
Nash equilibrium. Going further in this direction, Lang et al. [10]
prove more general results on the existence of equilibria in can-
didacy games, both positive and negative. Specifically, they show
that in the case of 4 candidates a pure strategy equilibrium always
exists for Condorcet-consistent rules; however, in the case of more
than 4 candidates these rules may (Copeland) or may not (Max-
imin) admit such equilibria. Importantly, and particularly relevant
to our paper, for Plurality voting with 4 or more candidates, there
are candidacy games without pure equilibria.

Against this background, in this work we combine the study of
equilibrium dynamics and strategic candidacy under Plurality. In-
deed, the fact that pure strategy equilibria may not, in general, exist

1Under the self-supporting candidate preferences assumption (de-
fined in Section 2).



in these games, raises the question of whether one exists for a given
preference profile and how (if at all) it can be reached dynamically
from a given initial state. In practice, such dynamic processes often
occur in online art, photo, literature or similar competitions, where
each contestant has to present examples of their work, and can re-
move or replace any of them at any time by a given deadline. Other
examples include sale campaigns where online shops choose items
to be advertised on the main page and can replace or remove them
at any time during the sales period, competitions among service
providers for a public project, deciding on a team working plan,
and so on.

In such scenarios, one may care not only about converging to
some equilibrium point, but reaching one where a particular candi-
date wins the election or a certain set of candidates still run. For
instance, in many common scenarios where the candidates, once
left, cannot enter the election again, the question of convergence
becomes trivial as any sequence of improving moves is finite. How-
ever, reaching a state with predetermined characteristics appears
computationally hard.

Interestingly, the two scenarios where the candidates are free to
leave and enter the election any time, or only can leave once and
never enter again, can be viewed as two extreme cases of a more
general setting where voters may feel discouraged by candidates
leaving the election and only return their votes to them, should they
renew their candidacy, with some probability. It turns out that even
assuming some arbitrarily small positive probability for each voter
to refuse re-voting for a once withdrawn candidate, is sufficient to
achieve convergence to equilibria with probability 1.
Contribution. The paper makes the following contributions:

1. We introduce a dynamic candidacy game model with refus-
ing voters, where, with probability pv , a voter v rejects a can-
didate who withdraws his candidacy. We show these games
converge with probability 1, for any pv > 0.

2. We define three decision problems, termed NE, WINNER
and SET, which, given a profile of preferences and an ini-
tial state, decide whether there exists an improvement path
leading to a Nash equilibrium, to an equilibrium with a pre-
determined winner or to one with a given set of running can-
didates, respectively.

3. For each of the three problems above, we consider its com-
putational complexity in two variants, indexed 1 and 0, cor-
responding to refusing probabilities pv = 1 and pv = 0, ∀v.
Except for NE1 where convergence is trivial, we show that
these problems are NP-hard.

4. Finally, we establish NP-hardness of deciding the existence
of an equilibrium with a predetermined winner in a static
game, the problem that we term ∃WINNER. This is in con-
trast with games with strategic voters where this problem is
trivially solvÐřble.

Some proofs are omitted due to space limitations.

2. MODEL AND PRELIMINARIES
We first recall some basic notions from voting theory and define
candidacy games, following notation in [10]. We then describe the
dynamic setting based on improvement moves by single candidates.

2.1 Candidacy games
There is a set of voters electing from a set of candidates. A single
vote is a strict ranking of the candidates. A voting rule takes all the
votes as input, and produces an outcome—a candidate that wins

the election. Although voting rules are usually defined for a fixed
number of candidates, for strategic candidacy settings the definition
is naturally extended to an arbitrary finite number of candidates.

Formally, we have a set C = {c1, c2, . . . c|C|} of potential can-
didates, and a set V = {v1, v2, . . . v|V |} of voters. It is assumed
that C and V are disjoint. Each voter v ∈ V has a preference re-
lation, Pv ∈ L(C), over the candidates, where for any finite set
X , L(X) denotes the set of all strict linear orders on X . For any
order L ∈ L(X) and x, x′ ∈ X we write x �L x′ if L ranks x
higher than x′. The combination PV = (Pv)v∈V of all the vot-
ers’ preferences defines their preference profile. Furthermore, each
candidate c ∈ C also has a preference ordering over the candidates,
Pc ∈ L(C). It is often assumed that the candidates’ preferences
are self-supporting—that is, the candidates rank themselves at the
top of their ordering.2 Let PC = (Pc)c∈C denote the candidates’
preference profile, and P = (PV , PC) represent the full profile of
preferences of both the voters and the candidates.

Following PC , the potential candidates may decide to enter the
election or withdraw their candidacy. Thus, the voters will only
need to express their preferences over a subset A ⊆ C of actual
candidates that will have chosen to participate in the election, and
we denote by P ↓A ∈ L(A) the restriction of PV to A. Each voter v
submits a vote (or ballot) b↓Av ∈ L(A). For time being, we assume
that the voters are sincere, that is, b↓Av = P ↓Av .3 A voting profile
b↓A = (b↓Av )v∈V is a vector of votes, one for each agent.

Given a set of actual candidates A ⊆ C, a voting rule F :
L(A)|V | → 2A takes a voting profile as input, and produces an
outcome—a nonempty subset of candidates, called the winners of
election. Here we consider resolute voting rules F : L(A)|V | →
A, which always return a single winner. That is, given their ir-
resolute version, we assume that ties are broken according to a
fixed tie-breaking rule. Specifically, we assume lexicographic tie-
breaking—i.e., ties are broken according to some predetermined
priority relation over the candidates. Since a voting rule is ap-
plied to varying sets of actual candidates, it is assumed that the
tie-breaking rule is defined for the whole set of potential candi-
dates, and projected to smaller sets of candidates; in other terms,
if x has priority over y when all potential candidates run, this will
still be the case for any set of candidates that contains x and y.
In this paper, we particularly focus on Plurality voting rule, which
decides the winner to be the candidate that is ranked first by most
voters. Hence, we can simplify notation by restricting each ballot
to specify only a single candidate—a voter’s top choice candidate
among all the running candidates.

Each such voting setting induces a natural game form, where the
set of players is given by the set of potential candidates C, and the
strategy set available to each player is {0, 1} with 1 correspond-
ing to entering the election and 0 standing for withdrawal of can-
didacy. A state s of the game is a vector of strategies (sc)c∈C ,
where sc ∈ {0, 1}. The outcome of a state s is F

(
b↓A

)
where

c ∈ A if and only if sc = 1. Coupled with candidates’ preferences,
this defines a normal form game with |C| players, Γ = 〈C,P,F〉,
where P = (PV , PC). Here, player c prefers outcome Γ(s) over
outcome Γ(s′) if PC

c ranks Γ(s) higher than Γ(s′).

2Even though our results do not rely on this assumption, we find it
rather natural. For instance, our hardness proofs are valid, in par-
ticular, for the case where the initial state is fixed to be one with
all potential candidates standing for election, which under self-
supporting preferences correponds to the truthful state.
3In Section 3, we extend the model to scenarios where a voter—
while still not being strategic—may feel discouraged, if his favored
candidates leave the election, and would refuse to vote for them
again, should they decide to re-enter the election.



2.2 Equilibrium dynamics
Having a normal form game defined, we can now apply standard
game-theoretic solution concepts. Let Γ = 〈C,P,F〉 be a can-
didacy game, and let s be a state in Γ. A player c ∈ C has an
improving move in s if there is s′c such that c prefers Γ(s−c, s

′
c)

over Γ(s). A (pure strategy) Nash equilibrium [13] is a state that
has no such improving moves.

A path in {0, 1}|C| is a sequence (s0 → s1 → · · · ) of states
such that for every k ≥ 1 there exists a unique player, say candi-
date c, such that sk = (s′c, s

k−1
−c ) for s′c 6= sk−1

c in {0, 1}. It is an
improvement path if for all k ≥ 1 it holds that sk−1 c→ sk is an
improvement move, where c is the unique deviator at step k. The
setting of dynamic candidacy is based on myopic improvement dy-
namics as above: the candidates start by announcing some initial
state, and then proceed and change their candidacy status in turns,
one at a time, up until no one has an objection to the current out-
come. We neither make assumptions on the initial profile s0, nor
restrict the order, in which the players apply their moves, or the
number of times for each candidate to change his status.

2.3 Reachable states
While it is known that a Nash equilibrium may not, in general,
exist for candidacy games under Plurality [10], the question re-
mains of whether one is guaranteed for a given profile of prefer-
ences, and how it can be obtained. In particular, it is interesting to
know whether an equilibrium state can be reached by a natural dy-
namic process based on improvement moves by single candidates
as above. We call such a state reachable. What is even more im-
portant though, is to find out what candidates would still stand for
election in the end of the process, or just who would be the final
winner.

To this end, here we define and investigate the computational
complexity of the following decision problems:

• NE. Given a candidacy game and its initial state s0, is there
an equilibrium state, reachable from s0?

• WINNER. Given an initial state s0 of a candidacy game and
a fixed candidate c, is there an equilibrium state, reachable
from s0, in which c wins the election?

• SET. Given an initial state s0 of a candidacy game and an
equilibrium state s, is s reachable from s0?

For each of these problems, we consider two of its variants de-
pending on whether a candidate believes or not getting his previous
votes back again, should he re-enter the election after having left
it once. These are two extreme cases of a more general model,
which we present next, where a voter refuses to re-vote for such a
candidate with some known probability.

3. REFUSING VOTERS
Here we extend the dynamic candidacy setting to scenarios where
withdrawals may cause the voters to ignore their once favorite can-
didates in the future. This is because the voters may either feel
discouraged by and lose their trust and interest in the candidates
who “let them down” by leaving the election, or simply stop up-
dating their information about the withdrawn candidates and hence
avoid making uninformed decisions. As we show, in this case con-
vergence is guaranteed with probability 1.

Formally, we assume that each time that a candidate c withdraws
his candidacy from the election, each voter v decides to block this
candidate with probability pv ∈ [0, 1], independently of other vot-

ers (unless he already blocked this candidate in previous steps).4

The only case, in which a voter v may return his vote to such a
banned candidate c, is when the candidate for whom v has been cur-
rently voting decides to leave the election, and the voter also finds
himself to have banned all the remaining candidates still standing
for election, so he must reconsider and vote for one of them (that
he prefers the most) again. We assume though that even in this case
candidate c is formally considered as “banned” by voter v—that is,
as soon as another candidate that had not been previously blocked
by v enters the election, voter v moves his vote away from c.5 Im-
portantly, the voters’ decisions are not strategic, that is, the voters
always follow their true preferences, even if restricted to only a
subset of available candidates.

We term a pair (Γ, (pv)v∈V ), where Γ is a candidacy game and
pv , for v ∈ V , are probabilities as above, a candidacy game with
refusing voters. Note that a state in this game, as well as a voting
ballot and hence, a game outcome, are determined not only by the
set of actual candidates, but also by the sets of banned candidates,
one for each voter. That is, state S is a tuple (A,B), where A ⊆ C
is a set of actual candidates and B = (Bv)v∈V where ∀v ∈ V ,
Bv ⊆ C is a subset of potential candidates, which are banned by
voter v. The corresponding ballot b↓A,B

v ∈ L(A) is then obtained
by placing subset A \ Bv in the top positions of the ballot, and
subset A ∩ Bv—in the bottom positions (i.e., ∀x ∈ A \ Bv and
∀y ∈ A ∩ Bv we have x �

b
↓A,B
v

y), while the internal order
of candidates in each of the two subsets is determined by the true
preference order Pv: i.e., ∀x, x′ ∈ A\Bv , x �

b
↓A,B
v

x′ ⇔ x �Pv

x′ and ∀y, y′ ∈ A ∩ Bv , y �
b
↓A,B
v

y′ ⇔ y �Pv y′. The outcome

of a state S is F
(
b↓A,B

)
.

Next, we demonstrate that for any positive probabilities pv , this
game converges with probability 1 from any initial state. Our proof
involves constructing a Markov chain that corresponds to a stochas-
tic process based on the candidates’ improvement moves and the
voters’ blocking actions, and showing that this chain is absorbing6.

Theorem 1. Let (Γ, (pv)v∈V ) be a candidacy game with refus-
ing voters under Plurality. If pv > 0, ∀v ∈ V , then with probability
1 any improvement path is finite.

PROOF. Consider a Markov chain over a set of states S = {S1, S2, . . . , S|S|}
of the candidacy game with refusing voters. The process starts in
one of these states and moves from one state to another at each step.
Given a current state Si, let pij denote the transition probability of
moving from state Si to state Sj at the next step; with probability
pii the process remains in the same state Si. Let us now determine
these transition probabilities.

For each state Si, let Ci ⊆ C be the set of candidates who
have an improving move from Si. Note that every candidate c has
exactly one possible move at each step, when the preference profile
P and the vector of banned candidate sets (Bi

v)v∈V define whether
this move is improving for c.

Assume first that Ci is non-empty. Then, one of the players in
Ci will apply his improving move, and the process will move to
another state Sj ; that is, pii = 0. To calculate pij , for each c ∈ Ci,
4Alternatively, one could consider a model where only those voters
who currently support a given candidate, may decide to block him
after his withdrawal. All our results hold for both these variants of
the setting.
5Alternatively, one could assume that when voter v returns his vote
to candidate c, he formally “unbans” him. All our results hold for
both these variants of the setting.
6That is, it has at least one absorbing state (which transits to itself
with probability 1), and it is possible to reach some absorbing state
from every state in the chain.



let pic = 1
|Ci| be the probability that c is randomly selected to move

from state Si; we have pic > 0, ∀c ∈ Ci, and
∑

c∈Ci p
i
c = 1. If

c /∈ Ai then c enters the election at this step, and the process moves
to state Sj where Aj = Ai ∪ {c} and Bj

v = Bi
v , for each v ∈ V .

The corresponding transition probability is pij = pic. Otherwise, if
c ∈ Ai, then c withdraws his candidacy, and the process moves to
state Sj where Aj = Ai\{c} and for each v ∈ V , either Bj

v = Bi
v

or Bj
v = Bi

v ∪ {c}. The corresponding transition probability is
pij = pic

∏
v∈V pijv where for each v ∈ V the probabilities pijv are

given as follows. If c is banned by voter v in Si, that is, if c ∈ Bi
v ,

then pijv = 1 for Bj
v = Bi

v (note that Bi
v ∪ {c} = Bi

v in this case).
Otherwise, if c is not banned by voter v in Si, then for Bj

v = Bi
v

we have pijv = 1−pv , and for Bj
v = Bi

v∪{c}we have pijv = pv .7,8

Finally, if Ci = ∅ then the process stays in Si with probability
pii = 1 (i.e., state Si is absorbing). The other transition proba-
bilities are zeroes. Observe that these probabilities do not depend
upon which states the chain was in before the current state Si, so
the Markov property does indeed hold.

We now turn to show that this chain is absorbing. That is, it has
at least one absorbing state, and it is possible to reach such a state
from every state in the chain. To this end, from any initial state
S0, we construct a path (S0 → S1 → · · · → St) with an ab-
sorbing terminal state St and positive transition probabilities. At
each step i = 1, . . . , t on this path, if there exists a candidate c in
Ai−1 who wants to withdraw his candidacy, let Si be the state with
Ai = Ai−1 \ {c} where as many voters as possible have banned c
after his withdrawal. If no candidate wants to leave the election in
Si−1 then choose any candidate c ∈ Ci−1 \ Ai−1 who would like
to enter the election and let Si be the state with Ai = Ai−1 ∪ {c}
and Bi

v = Bi−1
v for each v ∈ V . From above, the transition proba-

bility pi−1,i is positive (unless there are no improving moves from
state Si−1, in which case we are done). Now, note that any time
that a candidate enters the election, he gets some votes (otherwise,
he cannot change the outcome and this is not an improving move).
However, by our path definition, if/when he withdraws his candi-
dacy, all the voters block him, so he cannot get any more votes
should he enter the election again and so will stay aside. Indeed,
such a candidate could only hope to get votes from those voters
who have banned all the candidates by this step, but, as we men-
tioned before, the only case, in which a voter may return his vote to
a banned candidate, is when another candidate whom this voter has
been currently supporting (who is also his last unbanned candidate)
decides to leave the election, and the voter has to moves his vote to
those currently standing for election. However, the candidate that
re-enters the election cannot get his vote. Thus, each candidate can
enter the election at most once (and only if he was not running in
the initial state), and will never re-enter again since having left it
(which also can happen at most once).9 Since we only have |C|

7If for some voter v the withdrawing candidate c was his last un-
banned candidate, v must return his vote to candidate c′ whom he
prefers the most in Aj . In the setting where v unbans c′ in such a
scenario, the process moves to state Sj with Bj

v = Bi \ {c′} or
Bj

v = Bi ∪ {c} \ {c′}, with the same transition probabilities (that
is, pijv = 1− pv and pijv = pv , respectively).
8In the case where only those voters who support candidate c in Si

can block him after his withdrawal, the probability pijv also depends
on whether v votes for c or not.
9In the case where only those voters who support a given candidate
in the current state can block him after his withdrawal, a candidate
can re-enter the election at most |V | times on our path. Indeed,
by our path definition, if/when he withdraws his candidacy, all the
voters who can block him will do so, and there is always at least

potential candidates, after at most 2|C| steps10 (each with a posi-
tive probability), the path will reach its terminal state St where no
candidate wishes to join or leave the election, and hence, ptt = 1
(that is, St is absorbing).

Finally, knowing that in an absorbing Markov chain, the proba-
bility for the process to be absorbed is 1 (see e.g., [9]), completes
our proof.
In the following section, we consider the two extremes of Plurality
candidacy game with refusing voters (Γ, (pv)v∈V ), where pv = 0
or pv = 1, ∀v ∈ V . These cases correspond to two natural in-
stances of the game; the former coincides with the original model
where voters follow no other considerations but their preference
orders; in the latter, since all the voters block each withdrawn can-
didate, no one has incentives to ever renew their candidacy. For
these two cases, we study the computational complexity of NE,
WINNER and SET.

4. COMPLEXITY OF REACHING EQUILIB-
RIA

We start by showing that the WINNER problem is NP-hard in both
cases. Our proofs involve reducing from Exact 3-Set Cover (X3C)
and Restricted Exact 3-Set Cover (RX3C). We note that our reduc-
tions hold, in particular, for the special case where the initial state is
truthful. In addition, in case of WINNER0, the winner in an equi-
librium state that corresponds to a solution of the reduced problem,
is unique. The latter then implies the computational hardness of
NE0 and of the problem of deciding the very existence of a Nash
equilibrium with a predetermined winner, regardless of dynamic
processes, which we denote ∃WINNER.

For completeness, we first define X3C and RX3C:
• X3C. Given a set U = {u1, . . . , u3m} and a family Z =
{z1, . . . , zn} of triples zj = {uj1 , uj2 , uj3} ⊆ U , j =
1, . . . , n, is there a subfamily Z′ of Z such that every ele-
ment in U is contained in exactly one triple of Z′?

• RX3C. Same as X3C, with the additional restriction that each
element of U appears exactly in three triples.

We are now ready to state our results.

Theorem 2. WINNER1 is NP-complete.

PROOF. First, observe that the problem is in NP. Indeed, having
a state s coupled with a path (s0 → . . . → s), it takes polynomial
time to check whether s is an equilibrium state with a given winner
and whether (s0 → . . . → s) is an improvement path that leads
from the initial state s0 to s. Note that each valid improvement
path may only contain withdrawals, and so is of polynomial length.

To show hardness, we reduce from X3C with n ≥ 3m, by con-
structing an instance of WINNER1 as follows. Let C = Z ∪ Q ∪
U ∪ D ∪ {w0, w1, w} be the set of candidates where Z and Q
each contains n elements as the number of triples in X3C, U is a
set of 3m candidates corresponding to the ground set in X3C, D
is a (large) set of dummy players, and w0, w1, w are single distin-
guished candidates. The candidates’ preferences are in Table 1.

There is a set V of voters, divided into 7 blocks. As can be
seen from the voters’ preference profile in Table 2, Blocks 1 and 4
each contain n voters, Block 2 has 2n voters, and Block 3 has 3n.
Furthermore, there are 3m(f − 1) voters in Block 5, n(f − 1) +
2f − 3m voters in Block 6, and f voters in Block 7, where f is

one such voter. That is, after |V | entrances, the candidate gets to
the point where he is banned by all the voters.

102|V ||C| steps, in the case with only supporting voters being able
to block a candidate.



Z block Q block U block D block w0 w1 w
z1 . . . zn q1 . . . qn u1 . . . u3m d1 . . . d|D| w0 w1 w
q1 . . . qn w w w w1 w w1

w U U \ {ui} w1 U U U
U Z Z U Z Z Z

Z \ {zj} Q \ {qj} Q Z Q Q Q
Q \ {qj} w1 w1 Q w w0 w0

w1 w0 w0 w0 D D D
w0 D D D \ {di}
D

Table 1: WINNER1. Candidates’ preferences.

a large constant (it is sufficient to have f > 7(n3 + m)). For any
subset X ⊆ C, by Xcycle we denote a fragment of preference lists
where members of X appear in the same cycling order, with the
starting point being alternated—that is, for X = {x1, x2, . . . , xk},
we have (x1x2 . . . xk), (x2 . . . xkx1), and so on.

Let the initial state be s0 = (1, 1, . . . , 1) where all the candi-
dates run. We show that if X3C has a solution, then there exists an
improvement path from s0 to an equilibrium state s where the win-
ner is w. Otherwise, there is no such reachable equilibrium state.
At s0, the winner is w0 with f points. Note that since candidates
never have an incentive to re-enter the election after having left it
once (as p = 1), the score of the winner cannot decrease along
an improvment path, as leaving candidates only give their points to
remaining candidates and never take them back.

Consider now the first n steps of the process. We show that only
candidates zj ∈ Z can move at these steps. Indeed, look at the
first leaving candidate who is not in Z. It cannot be any dummie
player di ∈ D, as there are no dummies in the top of the preference
profile, and only those in the top for at least some of the voters can
pass their points to remaining candidates and change the outcome.
Now, anyone of the players qj ∈ Q, ui ∈ U , w0, w1 or w, can only
give a point to a dummie player (or to w1 in Blocks 1-4, in case they
have been previously “opened” (i.e., got to the top of the preference
list) by some zj that withdrawn his candidacy). But since none of
them has a preference for a dummie player or w1, they wouldn’t
make a move (in fact, the dummies even have no chances to win
the election, so there’s no point to do it for them at all.) Hence,
only zj ∈ Z can move at first n steps, making their favourite qj’s
or ui’s win the election.

After the first such step, w0 loses and can’t become a winner
ever again, but he keeps its f points, so a new winner must receive
at least f points. Now look at step m, where both w1 and w reach
f points. In the next n −m steps (if there are such steps) w will
be getting 1 additional point at each step, and w1 will be receiving
2 points. Hence, w will never become a winner, unless the process
stops at step m where w wins the election with f points (by the tie-
breaking with w1). Note though, that at each of the first m steps,
a withdrawn candidate zj was giving a point to some candidate ui,
initially having the score of f − 1. That is, if w is the winner after
step m, then no ui has received more than one additional point—
i.e., exactly m of them have been opened exactly once, and we
have an exact cover in X3C. The reverse direction is trivial: take
a cover, and let the corresponding zj’s leave one after another, in
descending order.

We now turn to the case with pv = 0, ∀v ∈ V . Since now the
candidates may not only leave, but also re-enter the election, our
proof requires a much more involved hardness reduction. Specif-
ically, we reduce from RX3C, building on the counterexample for
the existence of equilibria under Plurality presented in [10], using it
as a sub-block in our constructed preference profile, to help us lead
the process into a cycle when the reduced problem has no solution.

Theorem 3. WINNER0 is NP-hard.

Note that both Theorem 2 and Theorem 3 use the truthful state s0 =
(1, 1, . . . , 1) as initial point, so their results hold, in particular, for
this important special case. Also, from the proof of Theorem 3 we
derive another useful observation.

Lemma 1. There is an instance of WINNER0 with a fixed can-
didate, w, who wins the election in any equilibrium state that cor-
responds to an exact cover of the reduced RX3C.

Now, let ∃WINNER denote the following decision problem: Given
a preference profile P and a fixed candidate c, is there an equilib-
rium state s, in which c wins the election? The following Theo-
rem 4 is then a direct corollary of Lemma 1.

Theorem 4. ∃WINNER and NE0 are NP-hard.

Note that for NE, this result is in contrast with the case of pv = 1
where a stable state is easy to reach.

Theorem 5. NE1 always returns “yes”. Moreover, a stable
state is reachable in linear time.

Finally, we modify our reductions for the WINNER problem to
show NP-hardness of SET.

Theorem 6. SET0 and SET1 are NP-hard.

5. DISCUSSION AND FUTURE WORK
In this paper, we initiate the study of equilibrium dynamics in can-
didacy games. While such dynamic processes have recently been
in the focus of active research in the context of strategic voting, the
case where candidates behave strategically remained unexplored so
far. Naturally, we first focus on the simple Plurality rule.

Remarkably, solution sets for voting and candidacy games pos-
sess very different properties, which also imply differences be-
tween their corresponding dynamic processes. Thus, voting games
have multiple equilibria, some of which are highly undesirable (e.g.,
where all the voters select the same—and least preferred by all—
candidate). However, restricting the set of equilibria to only those,
reachable dynamically from the truthful state, appears useful in ex-
cluding such bad equilibria [1]. In contrast, for candidacy games
the very existence of an equilibrium is not guaranteed under Plu-
rality rule, thus implying the need of studying the existence and
reachability of equilibria for given profiles of preferences. Also, in
this context, besides seeking a state with a particular winner, it is
sensible to look for a state with a certain set of running candidates.
The main difference though, is in that equilibrium dynamics here
have no aim of eleminating equilibria but merely finding them.

Importantly, adding dynamics to searching for equilibria, also
has different impact on the complexity of the problem. Thus, find-
ing any stable state is easy in voting games, while checking that a
given equilibrium is reachable is NP-hard; on the other hand, for
truth-biased voters (who always vote truthfully unless can change
the outcome in their favour by deviating), the complexity of these
two problems gets reversed [14]. In contrast, as this paper shows, in



Block 1 Block 2 Block 3 Block 4
z1 z2 . . . zn z1 z1 z2 z2 . . . zn zn z1 z1 z1 . . . zn zn zn z1 z2 . . . zn
w w . . . w w1 w1 w1 w1 . . . w1 w1 u11 u12 u13 . . . un1 un2 un3 q1 q2 . . . qn
w1 w1 . . . w1 w1 w1 w1 . . . w1 w1 w1 w1 w1 . . . w1

D cycle D cycle D cycle D cycle
Z \ {zj} cycle Z \ {zj} cycle Z \ {zj} cycle Z \ {zj} cycle

U cycle U cycle U \ {uji
} cycle U cycle

Q cycle Q cycle Q cycle Q \ {qj} cycle
w0 w0 . . . w0 w0 w0 w0 w0 . . . w0 w0 w0 w0 w0 . . . w0 w0 w0 w0 w0 . . . w0

w w w w . . . w w w w w . . . w w w w w . . . w

Block 5 Block 6 Block 7
u1 . . . u1︸ ︷︷ ︸

f−1

. . . u3m . . . u3m︸ ︷︷ ︸
f−1

q1 . . . q1︸ ︷︷ ︸
f−1

. . . qn . . . qn︸ ︷︷ ︸
f−1

w1 . . . w1︸ ︷︷ ︸
f−2m

w . . . w︸ ︷︷ ︸
f−m

w0 . . . w0︸ ︷︷ ︸
f

D cycle D cycle D cycle
Z cycle Z cycle Z cycle

U \ {ui} cycle U cycle U cycle
Q cycle Q \ {qj} cycle Q cycle Q cycle

w1 . . . w1 . . . w1 . . . w1 w1 . . . w1 . . . w1 . . . w1 w1 . . . w1 w1 . . . w1

w0 . . . w0 . . . w0 . . . w0 w0 . . . w0 . . . w0 . . . w0 w0 . . . w0 w0 . . . w0

w . . . w . . . w . . . w w . . . w . . . w . . . w w . . . w w . . . w

Table 2: WINNER1. Voters’ preferences.

candidacy games the problems of finding a stable state with a given
winner, or reaching such a state dynamically, are both NP-hard.

On the other hand, notice that converging to a state with a given
set of actual candidates, which is NP-hard in the original case with
no refusing voters, becomes polynomial time solvable when voters
refuse to return their votes to witdrawn candidates with probabil-
ity 1. The question is then whether the problem can be efficiently
solved with high probability for any refusing probability pv > 0. In
other words, (when) is it possible to circumvent this computational
hardness in the model with refusing voters.

We thus believe that our work makes a first step in several excit-
ing directions. First, we hope that studying dynamic processes can
shed light on the properties of candidacy games under Condorcet-
consistent rules, which all admit equilibria for 4 candidates, but
split as the number of candidates grows. Second, given the hard-
ness results we presented here, one may seek opportunities for
getting positive results in terms of computational complexity, e.g.,
by restricting the space of preference profiles to single-crossed or
single-peaked domains. Furthermore, the model with refusing vot-
ers should be further extended (e.g., to scenarios where voters can
block a candidate for only a period of time or unblock them with
some probability at each step). Finally, it is interesting to investi-
gate equilibrium dynamics in the setting with both candidates and
voters being strategic [2]. While there are multiple equilibrium
states in this case, the question of whether they (and which of them)
are reachable remains open.
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