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ABSTRACT
We study a recently proposed model for the game-theoretic
analysis of voting mechanisms. It is well known that stan-
dard approaches can lead to a multitude of Nash Equilibria
(NE), many of which are counter-intuitive. Instead, we focus
on truth-biased voters, a promising model proposed to avoid
such issues. The model introduces an incentive for voters to
be truthful when their vote is not pivotal, i.e., when they
cannot change the outcome by a unilateral deviation. This
is a powerful refinement and recent simulations reveal that
the surviving equilibria tend to have desirable properties.
However, truth bias has thus far been studied mainly within
the context of plurality elections. In this work, we undertake
an equilibrium analysis of the veto rule under the truth bias
assumption. We identify several crucial properties of pure
NE for this voting rule under truth-bias, which show a clear
distinction from the non-biased game-theoretic model and
from the previously studied setting of truth-biased plurality.
We proceed by establishing that deciding on the existence
of Nash equilibria in veto under truth-bias is an NP-hard
problem. Finally, we characterize a tight (in a certain sense)
subclass of instances for which the existence of a NE can be
decided in polynomial time.

1. INTRODUCTION
Voting mechanisms are processes by which preferences can

be aggregated, and collective decisions can be made, in var-
ious multi-agent contexts. Under most voting rules, poten-
tially beneficial strategic behavior is essentially inherent, as
the Gibbard-Satterthwaite theorem famously states [6, 16].
Hence, under mild assumptions, voters may have incentives
to misreport their preferences. Given this negative result, a
natural approach, initiated by Farquharson [5], is to under-
take a game-theoretic analysis of voting, viewing voters as
strategic agents, and examining the set of Nash equilibria of
the underlying game.

However, most voting games contain an enormous amount
of Nash equilibria, with even small games reaching hundreds
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of thousands of equilibria. Furthermore, many of the equi-
libria are votes that will not occur in the real world (e.g., for
most voting rules, if all voters rank the same candidate last,
the case where all voters vote for this least favorite option
is a Nash equilibrium). Therefore, there has been very little
analysis regarding the structure of the different equilibria—
such an analysis would not be informative regarding the vot-
ing procedure and its quality. Moreover, without an under-
standing of strategic effects on voting, the ability to compare
voting rules and choose an appropriate one for each setting
is very limited.

In the past few years, several ideas have been raised re-
garding sensible limitations on the structure of games or
equilibria, in order to provide a better game-theoretic anal-
ysis of voting scenarios. One of the most popular ideas,
raised both in the social choice literature [3, 8] and in the
computer science literature [17, 10] is truth-bias. Truth bias
means that in scenarios in which the voter has no way to ma-
nipulate via an insincere vote (so as to improve the result),
the voter prefers to stick to its actual preferences and vote
truthfully. Such behavior indeed eliminates many nonsensi-
cal equilibria, and generally reduces the number of equilibria
in voting games [17].
Contribution: While truth-bias has been analyzed and ex-
plored for plurality, it has yet to be extended to other voting
rules, and this paper advances our understanding of the ef-
fect of truth-bias on other rules. It is not clear a priori
that the same structural properties that were identified for
plurality under truth bias will hold for other rules. Con-
sequently, we embark on handling the most prominent vot-
ing rule directly related to plurality—the veto rule, where
each voter chooses a single candidate from whom to with-
hold a point. We first characterize its truth-biased equi-
libria. We then further our results to describe an algorithm
that—using max-flow considerations—is able to discern, un-
der certain conditions, whether there exists an equilibrium
or not.1 Moreover, we are able to show that to a certain ex-
tent our result is tight, as removing even one of the identified
conditions results in an NP-complete problem.

1Unlike regular, non-truth-biased voting games, with truth-
bias there are scenarios where there is no Nash equilibrium
at all. This has also been shown for plurality.



1.1 Related Work
There have been many modeling approaches aimed at re-

ducing the multitude of Nash equilibria in voting games.
Some are based on introducing uncertainty, either regard-
ing the support of each candidate [12], or about the relia-
bility of counting procedures [11]. Other research suggests
changing the temporal structure of the game; for example,
[18] and [2] consider the case where agents vote publicly and
one-at-a-time, and study subgame-perfect equilibria of these
extensive-form games. A different approach is the notion of
lazy voting [2], where the utility function is changed so that
non-pivotal voters have a slight preference to abstain.

Another way to refine the set of equilibria is to stick to
the basic game theoretic models, but study equilibria that
are reachable by iterative voting procedures. The iterative
voting model was introduced by [10] and later expanded by
[9] and [1]; this work followed research into iterative and dy-
namic mechanisms, chiefly summarized by [7]. Interestingly,
[1] show that under plurality, the reachable equilibria of this
process are of relatively “good” quality.

We focus on a model different than the above for refining
the set of equilibria, that of truth bias. The notion of adding
truth bias to games has been introduced by [4] and by [8]
(for a specific case). It was also proposed for a specific voting
rule (with limited results) by [3]. A more robust model was
suggested by [17], which introduced the general framework,
and contained various empirical results for the plurality rule
in truth-biased games. The theoretical side of that work was
enhanced by [14]. More recent work has also attempted to
relate this line of work to iterative voting [15], but this again
is solely with respect to plurality.

2. DEFINITIONS AND NOTATION
We consider a set of m candidates C = {c1, . . . , cm} and a

set of n voters V = {1, . . . , n}. Each voter i has a preference
order (i.e., a ranking) over C, which we denote by ai. For
notational convenience in comparing candidates, we will of-
ten use �i instead of ai. When ck �i cj for some ck, cj ∈ C,
we say that voter i prefers ck to cj .

In an election, each voter submits a preference order bi,
which does not necessarily coincide with ai. We refer to bi as
the vote or ballot of voter i. The vector of submitted ballots
b = (b1, ..., bn) is called a preference profile. At a profile
b, voter i has voted truthfully if bi = ai. Any other vote
from i will be referred to as a non-truthful vote. Similarly
the vector a = (a1, . . . , an) is the truthful preference profile,
whereas any other profile is a non-truthful one.

A voting rule F is a mapping that, given a preference
profile b over C, outputs a candidate c ∈ C, the election’s
winner; we write c = F(b). In this paper we will consider
the veto rule, in which each voter chooses a single candidate
that will not receive any points from him/her. The voter
gives the rest of the candidates a single point each (i.e., no
internal ranking). Once all voters have voted, the candidate
with the largest number of points is the winner, and we
resolve ties using lexicographic tie-breaking. We denote by
sc(c,b) the score of candidate c ∈ C in a voting profile b.

In this work, we view elections as a non-cooperative game,
in which a utility function ui is associated with every voter
i, that is consistent with its true preference order. That is,
we require that ui(ck) 6= ui(cj) for every i ∈ V , cj , ck ∈
C, and also that ui(ck) > ui(cj), if and only if ck �i cj .

We let pi(ai,b,F) denote the utility of voter i, when ai
is its true preference ranking, b is the submittted profile
by all voters, and F is the voting rule under consideration.
Hence, pi(ai,b,F) = ui(F(b)). A Nash equilibrium in these
games is a profile bNE , where no voter has an incentive to
unilaterally deviate, i.e., for every i and for every vote b′i,
we have pi(ai,b

NE ,F) ≥ pi(ai, (b′i,bNE
−i ),F), where bNE

−i is
the vector bNE without player i’s vote.

However, such a model is known to result in multiple equi-
libria, including nonsensical ones. Assume, for example, that
all voters have the same preferences, which coincide with the
tie-breaking order; then the profile where all of them veto
their favourite candidate is an equilibrium. We can con-
struct many other undesirable equilibria. Hence, we instead
focus on the more promising truth-biased model [17]. In this
model, we suppose that voters have a slight preference for
voting truthfully when they cannot unilaterally affect the
outcome of the election. This bias is captured by inserting
a small extra payoff when the voter votes truthfully. This
extra gain is small enough so that voters may still prefer to
be non-truthful in cases where they can affect the outcome.
If a is the real profile and b is the submitted one, the payoff
function of voter i is given by:

pi(ai,b,F) =

{
ui(F(b)), if ai 6= bi,
ui(F(b)) + ε, if ai = bi.

As already described in Section 1.1, this model has re-
cently gained popularity, since it achieves a significant re-
finement of the set of Nash equilibria, and it has been ana-
lyzed in previous work under the plurality voting rule.

Now, the following two equilibrium-related problem classes
are of interest. The first deals with determining the existence
of equilibria in such a voting game, whereas the second asks
about the existence of equilibria with a given candidate as
a winner.

Definition 1 (∃NE). An instance of the ∃NE prob-
lem is determined by a preference profile a, and will be de-
noted by ∃NE(a). The profile a indicates the true prefer-
ences of the voters. Given a, ∃NE(a) is a “yes” instance
⇐⇒ the corresponding game, with truth-biased voters, ad-
mits at least one Nash equilibrium.

Definition 2 (WinNE). An instance of the WinNE
problem is determined by a preference profile a, and a candi-
date w ∈ C, denoted by WinNE(w,a). It is a “yes” instance
⇐⇒ the corresponding game, with truth-biased voters, ad-
mits at least one Nash equilibrium with w as the winner.

3. PROPERTIES OF NASH EQUILIBRIA UN-
DER TRUTH-BIAS

We begin by defining a class of candidates, which will
become useful further on:

Definition 3. In a profile b, where the winner is F(b),
a runner-up candidate is a candidate c ∈ C, for which one
of the following conditions hold:

• sc(c,b) = sc(F(b),b), and F(b) � c in the tie-breaking
rule,

• sc(c,b) = sc(F(b),b) − 1, and c � F(b) in the tie-
breaking rule.



Essentially, a runner-up candidate is a candidate that could
become a winner by gaining one extra point. We will de-
note the set of runner-up candidates that satisfy the first
(respectively, second) condition of the definition above by
R1 (respectively, R2). In a way similar to the analysis of
the plurality rule under truth-bias in [14], we define here
a notion of threshold candidate as well (the definition here,
however, is different, and tailored to our analysis of the veto
rule). Intuitively, a threshold candidate is a candidate that
would become a winner if the current winner, F(b), lost a
point.

Definition 4. Given a voting profile b, a threshold can-
didate c is a runner-up candidate for which one of the fol-
lowing holds:

• c is the maximal element of R1 w.r.t. the tie-breaking
order, if R1 6= ∅,

• c is the maximal element of R2 w.r.t. the tie-breaking
order, if R1 = ∅.

The next important lemma considers the score of a winner
at an equilibrium.

Lemma 1. Let bNE 6= a be a non-truthful Nash equi-
librium, with w = F(bNE). The score of the winner, w,
at bNE is the same as its score at the truthful profile, i.e.,
sc(w,a) = sc(w,bNE).

Proof. Suppose sc(w,bNE) > sc(w,a). This means that
there is a voter i ∈ V , that gives w a point that it would not
give under the truthful profile. That is, it is giving a point
to its least-favorite candidate. Such a voter can certainly
gain by switching back to its truthful vote. In that case,
either a new winner emerges, which would be above w in
the preference ranking of i, or w remains the winner, but i
gets a higher utility by ε, due to voting truthfully.

Now suppose sc(w,bNE) < sc(w,a), i.e., a voter i ∈ V is
vetoing w in bNE , but not in the truthful a. Yet, returning
to its truthful vote, ai, w will still remain the winner, and
this will increase player i’s utility by ε, due to the truth-
bias.

In fact, we can further show that not only does the win-
ner’s score not change at a non-truthful equilibrium, but the
set of voters which support the winner are the same as in
the truthful profile. Hence, we obtain the following:

Corollary 1. Let bNE 6= a be a non-truthful Nash equi-
librium, with w = F(bNE). The set of voters that veto w in
a is the same set that vetoes w in bNE.

The next properties that we identify are simple to prove
but crucial in understanding what equilibria look like under
the veto rule.

Lemma 2. For any non-truthful equilibrium profile bNE 6=
a, there always exists a threshold candidate in bNE.

Proof. It suffices to show that there always exist runner-
up candidates; hence, there is a threshold runner-up as well.
Let bNE 6= a be an equilibrium with w = F(bNE). Sup-
pose we have a non-truthful equilibrium and that there is
no runner-up candidate. Consider a voter i that voted non-
truthfully. By Corollary 1, the non-truthful voters in bNE

do not veto w (and they do not veto w in a either). Hence

i has vetoed some other candidate. By switching back to
its truthful vote, the outcome is not going to change, since
there is no runner-up candidate and since w is not going to
lose any points. Hence i is better off by ε to vote truthfully, a
contradiction. Thus there are always runner-up candidates
at a non-truthful equilibrium.

Observation 1. All voters that do not veto the winner
or the runner-ups in an equilibrium profile prefer the winner
over the threshold candidate (otherwise, they could just veto
the winner and make the threshold candidate win).

Example 1. There are cases where the threshold candi-
date in an equilibrium may have fewer points than in the
truthful state (note that this is not true for plurality, as
shown in Lemma 2 of Obraztsova et al. [14]). We show
this here with an example of 4 candidates. Suppose that the
tie-breaking rule is c � b � d � w, and the truthful profile
is:

• 3 voters with preference ranking: w � b � c � d.

• 2 voters with ranking: w � d � c � b.

• 1 voter with ranking: w � b � d � c.

• 1 voter with ranking: b � c � d � w.

Then c is the winner of the truthful profile. Now, let us look
at the following profile, which is an equilibrium, where one
voter has moved from the first group to the 3rd one:

• 2 voters with: w � b � c � d.

• 2 voters with: w � d � c � b.

• 2 voter with: w � b � d � c.

• 1 voter with: b � c � d � w.

Here w is the winner and the threshold candidate is c, which
has fewer points than in the truthful state.

Finally, to facilitate our discussion in the next sections,
we define the concept of “voting against” a candidate, and a
simple companion lemma.

Definition 5. We will say that a voter j votes against
candidate ci in a profile b, if bj 6= aj and ci is vetoed in bj.

Lemma 3. In every non-truthful NE, all non-truthful vot-
ers vote against some runner-up candidate (not necessarily
the same one).

4. COMPLEXITY OF NASH EQUILIBRIA
EXISTENCE

Having identified the properties above, we are now ready
to prove our first set of results regarding the problemsWinNE(w,a)
and ∃NE(a), as defined in Section 2. We start with the fol-
lowing negative result.

Theorem 1. Consider the veto rule and truth-biased vot-
ers. Then the problem WinNE is NP-complete.

Proof. While membership in NP is trivial, completeness
requires several steps. We will construct a reduction from
exact-cover by 3-sets (X3C).



Definition 6. The exact cover by 3 sets (X3C) is a prob-
lem in which we have a set of 3m elements U = {u1, . . . , u3m}
and a set of sets S = {S1, . . . , Sn} such that for 1 ≤ i ≤ n:
Si ⊂ U , |Si| = 3. We wish to know if there is a set T ⊆ S
such that |T | = m and ∪S∈TS = U .

Taking an X3C instance, we construct an instance of our
problem. Our candidates will be the members of S and U ,
to which we add two new candidates w and t. To construct
our voters, we introduce some markings to aid us: Si’s ele-
ments are {ui1 , ui2 , ui3}, and we denote by S the members
of S ordered as usual — S1 � S2 � . . . � Sn; similarly we
use U for the ordering of U . S̄ marks the opposite direction
— Sn � Sn−1 � . . . � S1, and ditto for Ū . Our tie-breaking
rule is w � t � S � U . We now describe the set of vot-
ers, which consists of the two blocks of voters described in
Table 1, along with 3 more blocks described below:

• Block 3: For every ui ∈ U , we have:

– m votes of the form: U \ {ui} � S � w � t � ui;

– n−2m−1 votes of the form: S̄ � Ū \{ui} � w �
t � ui.

• Block 4: For every Si ∈ S, we have:

– m votes of the form: S \ {Si} � U � w � t � Si;

– n−2m−1 votes of the form: Ū � S̄ \{Si} � w �
t � Si.

• Block 5: n−m votes of the form: t � S � U � w.

Block 1

S \ {S1}, Ū ... S \ {Sk−1}, Ū ...
U , S̄ \ {S2} ... U , S̄ \ {Sk} ...
w, w ... w, w ...
S1, S2 ... Sk−1, Sk ...
t, t ... t, t ...

Block 2

... U \ {ui1} U \ {ui2} U \ {ui3} ...

... S \ {Si} S \ {Si} S \ {Si} ...

... w w w ...

... t t t ...

... ui1 ui2 ui3 ...

... Si Si Si ...

Table 1: NP-Completeness proof profiles.

In the truthful profile, w is not the winner (u1 is). We
claim that there is an equilibrium in which w is the winner
if and only if there is a solution to the X3C problem.

Lemma 4. Given the constructed truthful profile, if a NE
profile bNE exists with w as a winner, t is the threshold
candidate in bNE.

The Lemma is easily proven by contradiction.
We conclude that in a NE profile bNE , t must be the

threshold candidate and it will have (n−m) points. Let us
now proceed with the remainder of the proof of Theorem 1.

If there is T = {S′1, . . . , S′m} ⊆ S which is a solution
to the X3C problem, we have an equilibrium in which w
is the winner: the voters from Block 1 whose penultimate

candidate is S′i ∈ T will veto S′i. The voters in Block 2
who veto S′i ∈ T instead veto their penultimate candidates
ui1/2/3 . In such a situation all candidates are vetoed by

n −m voters (apart from those in S \ T , which are vetoed
by n − m + 2 voters), and therefore w is the winner. All
voters are vetoing runner-ups which they prefer less than w
or t. Hence, changing their vote will make the candidate
they currently veto the winner, and as they would rather
have w win, they do not change their vote. Furthermore, all
voters from Blocks 1 through 4 that do not veto a runner-
up candidate, can only deviate so that t becomes a winner.
Since they prefer w to t, none of them will actually have an
incentive to deviate. Finally, none of the voters in Block-5
can change the election outcome and will remain truthful.

Now, assume that there is no solution to the X3C problem.
At least m voters from Block 1 will veto the Si’s (the only
candidates less-preferred than w). However, in order for
them not to revert to their truthful vote, those Si’s need to
be runner-up candidates, so all votes in Block 2 who would
truthfully veto those Si’s, need to veto their respective ui’s
instead. In addition, those ui’s need to be runner-ups as
well (or those Block 2 votes will revert to the truthful vote),
and as they are ranked below S in the tie-breaking rule,
they need to have m − n vetoes in order to be runner-ups.
This means that each ui is vetoed only once in Block 2. So
we have m (or more) Si’s containing exactly one copy of
each ui; i.e., we found an exact cover of U , contradicting
the assumption that X3C has no solution.

A variant of the proof presented above can also be used
to prove a more general theorem (due to lack of space, the
proof is not presented here).

Theorem 2. Consider the veto rule and truth-biased vot-
ers. Then the problem ∃NE is NP-complete.

It is possible to further expand upon the result of Theo-
rem 1. To this end, we identify two conditions that help us
characterize the set of computationally hard instances. In
particular, given a candidate w ∈ C and a truthful profile
a, we consider the following conditions:

C1: Let t ∈ C be the candidate right below w in the tie-
breaking order (i.e., the tie-breaking order is in the
form · · · � w � t � · · · ). Then sc(t,a) ≥ sc(w,a).

C2: Let t be as in C1. Then, for every voter i that does not
veto w in the truthful profile a, it holds that w �i t.

See Section 5 for a discussion on the role of these two
conditions. The following corollary is now implied by the
proof of Theorem 1.

Corollary 2. The problem WinNE is NP-complete, even
for the family of instances that satisfy condition C2 and do
not satisfy condition C1.

In fact, together with the theorem below, the picture be-
comes clearer regarding hardness results: violating either
one of the conditions C1, C2, makes the problem WinNE
hard.

Theorem 3. The problem WinNE is NP-complete, even
for the family of instances where C1 holds but C2 does not.

Proof. As with Theorem 1, we will construct a reduction
from X3C. We will use the same notation, where S is the set



of sets and U is the set of elements in an instance of X3C,
and convert the members of these sets into distinct candi-
dates. However, unlike the previous proof, in addition to
the candidates from S and U , we will introduce four special
candidates w, t, p1 and p2.

Based on the candidate set defined above, we will con-
struct a set of voters and their truthful preference profile a,
so that a solution to WinNE(w,a) would entail a solution
to the X3C instance.

We will order the candidates to form the following tie-
breaking preference order: w � t � p1 � p2 � S � U ,
where candidates from S and U appear in their natural lex-
icographic order.

We now construct a set of voters, grouped into five dis-
tinct blocks, according to their truthful preference profile.
In each block we only explicitly describe the order of a few
least-preferred candidates. All candidates that are not ex-
plicitly mentioned in a profile, appear in an arbitrary order,
and are marked by . . . .
• Block 1: A set of n voters, one for each candidate in S,
with preference profile of the form · · · � t � w � Si � p1;
• Block 2: A set of n−m voters with preference profile of
the form · · · � t � w � p2 and one additional voter with
profile of the form · · · � w � t � p2;
• Block 3: For each {ui1 , ui2 , ui3} = Si ∈ S a set of
n − m + 2 voters. Three with profiles of the form · · · �
w � t � uij � Si, where j ∈ {1, 2, 3}, and all others of the
form · · · � w � t � Si;
• Block 4: For each uk ∈ U a set of n−m− 1 voters with
profiles of the form · · · � w � t � uk;
• Block 5: A set of n −m − 1 voters with profiles of the
form · · · � w � t
• Block 6: A set of n−m voters with profiles of the form
· · · � t � w.

Let us now show why the existence of an equilibrium pro-
file that solves WinNE(w,a), where a is as described above,
entails a solution to the X3C instance. To this end, consider
the voters’ behaviour in a NE profile b, where w is the win-
ner.

According to Lemma 1, sc(w,b) = sc(w,a), yet by our
construction sc(t,a) = sc(w,a) + 1. Hence, for w to be-
come a winner in b, t has to receive at least one additional
veto and will also be a threshold candidate (if t is not a
runner-up, it means several are no longer vetoing it, but as
they are vetoing some non-winner instead, they can revert
to being truthful and gain ε utility. Due to its loss to w in
tie-breaking, it means t is a threshold candidate). According
to Lemma 3 and the truth bias assumption, none of those
who vetoed t in a would switch to veto another candidate.
In fact, there is only one voter that needs to deviate from
its truthful profile and veto t.

Consider the voters of Block 2. (n −m) of them prefer t
to w, and would not veto the former. Yet, if they lie in b,
they have to veto a runner up. As a result, none of them
can deviate from their truthful profile in equilibrium. On
the other hand, the last voter of the block can (and should)
deviate, and veto t.

Similarly, consider the score of p1 in the truthful profile a
and compare it to that of sc(w,a). For w to be the winner
of the equilibrium profile b, m voters from Block 1 need
to deviate in the equilibrium and stop vetoing p1. These
newly vetoed candidates have to be less preferred than w

by the deviating voters. For voters of Block 1, this means
vetoing a candidate from the set S. As a result, there are m
candidates Si ∈ S that are being vetoed by the voters from
Block 1 in the equilibrium profile b.

These chosen Si’s, however, need to be runner-up candi-
dates. To achieve that, exactly 3 candidates that veto Si’s
in Block 3 must deviate in the equilibrium profile b. These
can only be the voters with preference profiles of the form
· · · � w � t � uij � Si, where j ∈ {1, 2, 3}.

Since no voter in Block 4 can deviate, those voters from
Block 3 that deviate to veto uij s can only do so consistently
with Lemma 3, if the total number of times that uij is being
vetoed is equal to (n − m). This can happen only if each
uij ∈ U is vetoed exactly once by voters from Block 3.

As a result, the sub-set Si’s that are vetoed by voters in
Block 1 constitutes a solution to the given X3C instance.
The opposite direction, that is, constructing a NE profile
given a solution to the X3C instance, is trivial.

The results of this section show that there are critical
properties of the truthful profile a that make the existence
of an equilibrium with a given winner a hard problem. How-
ever, as we show in the next section, combining these proper-
ties, namely condition C1 and C2, creates a polynomial-time
decidable sub-class of profiles.

5. A POLYNOMIALLY SOLVABLE SUBCLASS
In the previous section, we demonstrated two conditions

on a candidate and the truthful profile that, if violated, make
WinNE(w,a), under truth-biased voters, NP-hard. In this
section, we complete the treatment of possible profile classes
by considering the subset where both aforementioned con-
ditions hold. In fact, we provide a constructive proof, via
a reduction to a max-flow problem, that in this sub-class of
truthful profiles the WinNE(w,a) problem is polynomial.

Theorem 4. Consider a candidate w ∈ C and a truth-
ful profile a for which conditions C1 and C2 hold. Then
WinNE(w,a), i.e., the existence of a NE profile bNE, where
F(bNE) = w, is poly-time decidable.

The statement of the above theorem is tight, given The-
orems 1 and 3. Namely, should either one of the conditions
C1 or C2 be violated, determining the existence of a NE
with w as the winner becomes NP-hard. The conditions C1
and C2 ensure that we can focus on a particular threshold
candidate (namely candidate t) for constructing a Nash equi-
librium profile. While C1 ensures some manipulation will
be necessary (and the preference order ensures it will be a
threshold), it is C2 that ensures that t can be a valid thresh-
old candidate, since without it, as Observation 1 noted, it is
not possible.

Proof. Consider an instance of the problem specified by
a potential winner w ∈ C and the real profile a. Let t also
be the candidate right next to w, as specified by conditions
C1 and C2. The proof is based on a polynomial reduction
to the max-flow problem in a graph. We will construct a
graph (and later correct the flow) in such a way that the
set of flow-saturated edges will indicate the feasibility of ob-
taining a Nash equilibrium. Furthermore, positive flow at
certain nodes in the graph will indicate a switch in the vot-
ers’ equilibrium ballots from their truthful profile.
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Figure 1: Polytime special veto subclass. Palm sub-
structure for Theorem 4.

Given a truthful voting profile a, we will construct the
graph as follows. Vertices will be associated with each can-
didate and each voter; we also add a source and a sink node.
The set of graph vertices will therefore be {source, sink} ∪
C ∪ V .

The set of edges, E, in the graph will consist of three
subsets.
• Potential deviators. Edges that link voters and po-

tentially vetoed candidates.
For a voter i where the last candidate in its real preference

order is some r ∈ C, i.e., the preference order is in the form
. . . � w � c1 � . . . � cl � r, add the following directed
edges with unit flow capacity: (r, vi), (vi, c1), . . . , (vi, cl).

The resulting palm-leaf sub-structure is depicted in Fig-
ure 1. It essentially captures the ability of the voter to
change its veto in a manner that will benefit w without de-
teriorating the voter’s utility (note, of course, that there are
multiple such sub-graphs in the graph, and vertices may be
part of several such structures).
• Sustainable deviations. Edges from the source node.

These edges and capacities reflect the number of additional
points a candidate may absorb until it becomes a runner-up
candidate w.r.t. w. Hence (recall that t is the candidate next
to w in the tie-breaking order, as specified by conditions C1
and C2):

For each candidate c so that t � c in tie-breaking and
sc(w,a) − sc(c,a) > 0, a directed edge (source, c) is added
with capacity sc(w,a)− sc(c,a).

For each candidate c so that c � w in tie-breaking and
sc(w,a) − sc(c,a) > 1, a directed edge (source, c) is added
with capacity sc(w,a)− sc(c,a)− 1.
•Necessary deviations. Edges to the sink node. These

edges and capacities reflect the number of additional veto
votes a candidate needs to sustain to make its score less
than that of w. Otherwise, w would not be able to become
the winner.

For each candidate c so that t � c in tie-breaking and
sc(w,a) − sc(c,a) < 0, a directed edge (c, sink) is added
with capacity sc(c,a)− sc(w,a).

For each candidate c so that c � w in tie-breaking and
sc(w,a) − sc(c,a) < 1, a directed edge (c, sink) is added
with capacity 1− (sc(w,a)− sc(c,a)).

Given Corollary 1, the non-truthful votes at an equilib-
rium profile come from voters that were not vetoing w in
a, and they now lie by vetoing some candidate other than
their truthful vetoed candidate, which is less-preferred than
w. From the construction of the graph, it is easy to see that
if the maximal flow through the above graph is less than
the sum of all incoming capacities to the sink node, then

there can be no equilibrium profile that makes w a winner.
To see this, observe that only candidate vertices connect di-
rectly to the sink, and these are precisely candidates that
have higher scores than w. Total capacity of all these edges
equals the number of voters that necessarily have to change
their vote. Furthermore, the flow has to go through voter
vertices, connected to candidates that are less-preferred to w
(and hence indicate a switch from the truthful vote to a non-
truthful one). Finally, if all edges to the sink are saturated
in a maximum flow, we will show that a Nash equilibrium
profile bNE , with F(bNE) = w, can be recovered from the
flow. In what follows we will demonstrate this formally.

Let f : E →R be a maximal acyclic, integer flow through
the constructed graph. Such a flow can be obtained in time
polynomial in the number of voters and candidates. Fur-
thermore, all edges from a candidate node to a voter node
that have positive flow on them will be saturated (as their
capacity is 1).

We will now modify the flow, while maintaining its total
capacity, to maximize the flow through the source outgoing
edges, and minimize the flow through voter nodes. Since
we will later associate a flow through a voter node with
the voter deviating from the truthful vote, minimizing the
flow through voter nodes will reflect and ensure that the
voting profile recovered from it will be truth biased (i.e., no
unnecessary lying takes place, otherwise some voter would
have an incentive to switch back to the truthful vote).

Let D = {c| ∃e = (source, c) ∈ E} be the set of all nodes
to which the source is directly connected. Notice that D is
a subset of candidate nodes. Let q ∈ D be a node for which:
i) there is a voter v so that (v, q) ∈ E; ii) f((v, q)) > 0; and
iii) the edge (source, q) is not saturated. We will repeat the
following flow modification until no such q exists.

Consider a flow path to q through voter nodes. In par-
ticular, let π = (source = n0, n1, . . ., nl = q) be an acyclic
path from the source to q, so that ek = (nk−1, nk) ∈ E for
all k ∈ [l] and f(ek) > 0. Notice that since f is an inte-
ger flow and all edges between candidate nodes and voter
nodes have unit capacity, all the edges of the path have a
unit flow apart from the initial edge from the source to n1.
We will modify the flow f and construct an augmented flow

f̂ by canceling the flow through π, and replacing it with an
additional unit flow from the source to q. More formally,

let f̂ = f . We then set f̂(ek) = 0 for all k ∈ [1 : l − 1],

f̂((source, n1)) = f((source, n1)) − 1 and f̂((source, q)) =
f((source, q)) + 1. We then repeat the modification proce-

dure, if necessary, for f̂ . Notice that the flow modification
procedure does not change the total flow from the source to
the sink node.

Assume now that the flow is such that for all nodes q ∈ D,
either the edge (source, q) is saturated, or q has no positive
incoming flow from the voter nodes. Then for every voter
vi ∈ V , if there is an edge (vi, cj) for some cj ∈ C, so that
f(vi, cj) > 0, i.e., saturated, we let vi change its vote to veto
cj . Otherwise, vi votes truthfully. Let bNE be the resulting
strategy profile. It is easy to see that bNE is indeed an
equilibrium.

Notice that the equilibrium profile, bNE , was constructed
in poly-time. Recall, the steps consisted of: a) constructing
the graph, which takes time polynomial in the number of
candidates, m, and voters, n; b) finding a maximal acyclic
integer flow (poly-time algorithms exist, and any one is suit-



Table 2: Summary of our complexity results and other properties.
Conditions Veto Plurality k-approval

¬C1 and C2 C1 and ¬C2 C1 and C2
WinnerNE(w,a) NP-hard P NP-hard NP-hard

Winner score may grow in equilibrium No Yes Yes
Winner score may drop in equilibrium No No No

Runner-up score may grow in equilibrium Yes No Yes
Runner-up score may drop in equilibrium Yes No Yes

able); c) a set of flow modifications. Finding the path π
necessary for the flow modification takes polynomial time
in m and n, e.g., by following the flow f back through the
saturated edges. Furthermore, the number of repetitions of
the flow modification process is polynomial in the number
of candidates and voters as well. This is because the flow
through any candidate node from voter nodes is bounded
from above by the number of voters, and is reduced by one
in every modification. As a result, the running time of the
whole algorithm is polynomial.

Note that we cannot have an analogous separation for the
problem ∃NE, since the conditions C1 and C2 depend on
the winner under consideration. Hence, we can clearly have
a polynomial time algorithm for ∃NE, if C1 and C2 hold
for every w ∈ C (running the algorithm for WinNE(w,a)
for every w), but we cannot conclude anything if these con-
ditions do not hold across all candidates.

6. DISCUSSION AND FUTURE WORK
We have investigated truth-biased voters under veto, fo-

cusing on their Nash equilibria characteristics. While we
have shown that, in general, the problems we studied are
NP-complete for veto (and, as previously known, for plu-
rality as well), we showed a tight subset of cases where
there is a polynomial time algorithm for knowing if there
is a Nash equilibrium with a winner of our choice (and find-
ing it too). A summary of our results (combined with the
results from [14] for plurality and from [13] for k-approval)
can be seen in Table 2.

There are several further research areas to pursue. First,
we can combine this research with other voting approaches.
For example, while there has been research on iterative vot-
ing with truth-bias, it has only focused on plurality.

A different approach remains strictly within the frame-
work of truth-bias, and tries to further enhance our under-
standing of truth-biased voters, and expand the research of it
to more voting rules (most interesting, to non-scoring rules,
such as maximin), allowing us to further understand the ef-
fects of truth-bias. However, this approach presents unique
challenges, as while truth-bias in binary scoring effectively
eliminates the most egregious of nonsensical equilibria, ex-
panding it to other voting rules requires a wider net, in a
sense, to eliminate such equilibria.
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