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ABSTRACT
Hunger is a major problem worldwide. To help alleviate
hunger, we are studying mechanisms to distribute donated
food more effectively. This is a significant challenge faced
by food banks. We study a simple setting capturing features
of a real-world charity problem. A number of charities (or
agents) bid for a number of food items in an online manner
and a mechanism allocates each item to a charity. We focus
here on an empirical analysis of the properties of two simple
mechanisms for this problem. The main conclusion is that
the more sophisticated of the two mechanisms achieves fairer
online allocations from utilitarian/egalitarian perspective.
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1. INTRODUCTION
The underpinnings of resource allocation in theory are

usually studied through the use of simple models. One such
long-standing abstraction is fair division (e.g. [13]). Its in-
stances are characterized based on several orthogonal as-
sumptions: (1) divisible or indivisible goods, (2) centralized
or decentralized control, (3) cardinal or ordinal preferences,
etc. (e.g. [6]). But, how do we allocate scarce and, often,
limited resources in practice? In the real world, we are un-
certain about every bit of information that can be used when
making such important decisions. For example, the goods
may not be all available a priori or the preferences might
be incomplete. As a result, any online allocation of our re-
source is expected to be less fair than if we were allocating
it in an offline manner. This motivates the development of
more complex and sophisticated mechanisms for online fair
division (e.g [16]). Section 2 introduces the problem setting
and two such mechanisms that allocate items to agents, first
mentioned in [15]. [1] studies strategy-proofness and envy-
freeness of these mechanisms, summarized in Sections 3 and
4. We also add on their proportionality in Section 5. Fur-
ther, Section 6 discusses their competitiveness and Section
7 reports on our experimental results. We conclude that
one of the mechanisms competes with the optimal (offline)
mechanism that assumes all data is available a priori.
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2. THE SETTING
It is a misfortune that nowadays many people around the

world still live in poverty. This is a significant problem even
in developed countries such as Australia. According to the
2012 report “Poverty In Australia” (i.e. [7]), approximately
10% of the population cannot afford to put food on their
table. As a response to that, they urgently call on the food
banks for help. The bank itself caters nearly 90000 meals
every day and still cannot meet the increasing demand. For
this purpose, the charities are keen on improving their op-
erations and thus distributing the food more efficiently.

We have been working with a social startup, FoodBank
Local, towards developing technologies to support Australian
charities and thus improving the efficiency of their opera-
tions. Thus far, this has involved building an app that helps
collecting and delivering donated food. This app uses our
vehicle routing solver to route their fleet. However, all this
food must be allocated to different charities before being
catered to local restaurants and public kitchens. We are
therefore turning our attention to how to allocate the do-
nations. This is an interesting and non-trivial fair division
problem that combines many traditional and novel features.
On the one hand, we want to allocate food fairly between
the different charities as they feed different sectors of the
community. The goods are assumed to be packed and hence
indivisible. On the other hand, the problem is online. All
donations arrive throughout the day and we must start allo-
cating and distributing them almost immediately, possibly
expecting more donations later on. We have therefore for-
mulated an online model of this fair division problem, and
studied mechanisms that can fairly and efficiently allocate
the donated food.

In our setting, we suppose there are k agents and m items.
Each agent has some (private) utility for each item. One
item appears at each time step, and the allocation mech-
anism must assign it to one of the agents. The next item
is then revealed. This continues for m steps. To allocate
items in this online model, we consider a simple class of bid-
ding mechanisms in which agents merely declare how much
they like each item. We say that an agent bids for an item
if they declare that they like the item. For instance, the
Like mechanism allocates the next item uniformly at ran-
dom between agents that bid for the item. An allocation is
a possible outcome of the Like mechanism if each item is
given to an agent that bids for it, whilst an allocation is a
necessary outcome if no two agents bid for the same item,
and each item is given to the agent that bids for it, or to no
one if no agent bids for it.



One problem with the Like mechanism is that agents can
get unlucky. It is possible for them to bid for every item
but have every coin toss go against them and not be al-
located anything at all. This is highly undesirable in our
Food Bank setting. A whole sector of the population will
then not be fed that night. We therefore consider a slightly
more sophisticated mechanism that helps tackle this prob-
lem. The Balanced Like mechanism tries to balance the
number of items allocated to agents compared to the Like
mechanism. It allocates the next item uniformly at random
between those agents that bid for the item and have so far
received the fewest items. The Balanced Like mechanism
is less likely to leave agents empty handed than the Like
mechanism. In particular, an agent is guaranteed to be allo-
cated at least one item for every k items that they bid for.
However, there is no guarantee that it necessarily returns
balanced (i.e. equitable) allocations.

3. STRATEGY-PROOFNESS
We say that an agent bids sincerely for an item if they

report their private utility for this item. Otherwise, the
agent bids insincerely for the item. Thus, a mechanism for
online fair division is strategy-proof if, (?) with knowledge of
the items still to be revealed, the order in which they will
be revealed, and the private utilities of the other agents,
an agent cannot increase their expected utility by bidding
insincerely. Hence, given a mechanism that is strategy proof,
no agent can manipulate the outcome and improve their
expected utility at the expense of agents who are sincere in
their play.

When using the Like mechanism, each agent bidding for
a given item gets an equal chance of receiving it. As a result,
no agent has an incentive to bid for items that they do not
like. This will not increase their expected utility. Further-
more, each agent will always bid for items that they like, as
otherwise their expected utility will decrease. Consequently,
an agent’s best play is to bid sincerely and therefore the Like
mechanism is strategy-proof. In other words, no agent can
manipulate the outcome.

This is however not the case when using Balanced Like
even when restricted to 0/1 utilities. Now, an agent may
choose not to bid sincerely for a particular item that they like
and thus expect to be allocated more items in the following
rounds. Such manipulations may decrease the equitability of
the final allocation. On the contrary, no agent has incentive
to bid for an item that they do not like. Such a strategy will
only bias the allocation of the following items in favour of
the other agents.

Example 1. Suppose we are allocating items a, b and c in
alphabetical order between agents 1, 2 and 3, with the follow-
ing utilities. Figure 1 depicts all possible allocations of items

a b c
1 1 1 1
2 0 1 0
3 1 0 1

a, b and c to agents 1, 2 and
3, that are based on these util-
ities and can be obtained using
the Balanced Like mecha-
nism. We consider 2 cases.

First, by bidding sincerely, agent 1 receives an expected util-
ity of 9

8
. Second, this value increases to 5

4
supposing she bids

strategically only for items b and c, and the other agents bid
sincerely. The latter is a strict improvement for agent 1.
In fact, no other agent can improve their outcome in this
setting.

a

b

b

c

c

c

Figure 1: 1-solid, 2-dotted, 3-dashed

The latter result adapts easily to the case with more gen-
eral utilities. To see that, suppose that agent 1 in Example
1 assigns some strictly greater utility to item c. In this
case, her best play is again not to bid for item a. However,
note that in this more general setting, the Balanced Like
mechanism does not take into account the absolute value of
the reported bids when allocating the items. Instead, it only
considers whether these bids are equal to zero or not. Hence,
no agent has incentive to bid insincerely some non-zero value
for an item that they like. Also, no agent has incentive to
bid for items that they do not like. As a conclusion, each
agent may only have incentive not to bid for items that they
like.

Inspired by these arguments, we will consider a subset of
pure Nash equilibria by assigning a small utility cost to tak-
ing delivery of (liking) an item. Each profile in this subset
is called a simple pure Nash equilibrium as each agent now
may not bid for items that they like. We are interested in
how the strategic play of the agents affects the happiness
of the community. Two widely accepted aggregate indica-
tors measuring this happiness are utilitarian and egalitarian
welfares. The former one is defined as the sum of the ex-
pected utilities of the agents whereas the latter one is equal
to the minimum expected utility an agent receives. Now,
the sincere play is the only simple pure Nash equilibrium for
the Like mechanism and, therefore, there is no difference in
welfare between sincere play and the simple pure Nash equi-
librium. By comparison, the sincerity may not be the best
play for an agent when using the Balanced Like mech-
anism. As a positive consequence, each simple pure Nash
equilibrium maximizes the utilitarian welfare. The reason
for that is simple - each agent gets items that they like in
each possible allocation. Whilst, the strategic play in this
case may have either positive or negative effect on the egal-
itarian welfare. Example 1 indicates that this welfare may
decrease. On the other hand, there are instances in which
the strategic play of the agents improves it.

Example 2. Suppose the fair division of 6 items in al-
phabetical order between agents 1, 2 and 3, with the fol-
lowing utilities. Running the Balanced Like mechanism,

a b c d e f
1 1 1 1 0 0 0
2 1 1 0 0 1 1
3 1 0 1 1 0 1

one always obtains an alloca-
tion with egalitarian welfare 1,
except when the items are al-
located to the agents accord-
ing to the sequence of agents

(3, 1, 1, 3, 2, 2), in which case the egalitarian welfare is 2. By
analysing the allocation tree that is based on the utilities of
the agents, one can see that the instance has a unique simple
pure Nash equilibrium, which favours this allocation and in
which agent 1 does not bid for item a. With this strategic
move, her expected utility increases to 9

8
from 13

12
. The latter

is also the value of the egalitarian welfare in the correspond-
ing cases.



From now onwards, we consider only simple pure Nash
equilibria. To conclude, note that (?) is a strong assumption,
supposing that a strategic agent has full knowledge of the
items still to be revealed, the order in which they will be
revealed, and the private utilities of the agents for these
items. In practice, agents may only have partial knowledge.
This will greatly limit the willingness of, say, a risk averse
agent to be strategic. For instance, if there is a chance that
only items that they do not like will arrive in the future, a
risk averse agent will always bid sincerely for an item that
arrives now which they like.

4. ENVY-FREENESS
Fairness is important feature that describes the equity of

the allocation and the prosperity of the society. But, how
fair are our mechanisms? Is the Balanced Like mechanism
more fair in some sense than the Like mechanism. Since the
outcomes of our mechanisms are random, we consider fair-
ness notions both ex post (with respect to the actual alloca-
tion achieved in a particular world) and ex ante (with respect
to the expected utility over all possible worlds). One com-
mon notion of fairness is envy-freeness (e.g. [3]). An agent
envies ex post/ex ante another agent if their utility/expected
utility of the other agent’s allocation is greater than their
utility/expected utility of their allocation. A mechanism is
thus envy free ex post/ex ante if no agent envies another ex
post/ex ante. We also consider a weaker notion of envy-
freeness supposing the agents can envy each other, but in a
bounded sense. An agent has bounded envy ex post/ex ante
with constant a of another agent if in every case their util-
ity/expected utility of the other agent’s allocation is at most
a greater than their utility/expected utility of their own al-
location. We say that a mechanism is bounded envy free
ex post/ex ante with constant a if each agent has bounded
envy ex post/ex ante with constant a of every other agent
given any possible allocation. To compute this bound, we
first compute all possible allocations. Then, we compute a
bound that indicates how much an agent envies ex post an-
other for each possible allocation. Now, the constant a is
the greatest ex post bound over all possible allocations.

If a mechanism is envy free ex post/ex ante then it is
bounded envy free ex post/ex ante with constant 0, whilst if
a mechanism is (bounded) envy free ex post (with constant
a) then it is (bounded) envy free ex ante (with constant a).
It is easy to show that no mechanism for indivisible items
that allocates all items can be envy free ex post: suppose
we have one indivisible item and two or more agents who
bid sincerely for it. We next summarize the results about
fairness that we formally show in [1].

Supposing agents act sincerely, the Like mechanism is
envy free ex ante. To see that, note that each agent bidding
for an item assigns the same expected utility to all possible
allocations of that particular item. The same conclusion
holds also for each agent not bidding for the item. Therefore,
no agent envies ex ante another one. In contrast, the Like
mechanism is not bounded envy free ex post as an agent
may be allocated much more items than another one.

Example 3. Suppose the fair division of m items and 2
agents. Let each agent has utility 1 for each item. There is
one outcome in which agent 1 gets all the items. In this case,
agent 2 assigns a utility of m units greater to the allocation
of agent 1 than to their own (empty) allocation.

As the Like mechanism is strategy-proof, it seems rea-
sonable to suppose agents act sincerely. By comparison, in
this setting, the Balanced Like mechanism is neither envy
free ex ante nor bounded envy free ex post (or even ex ante)
with general utilities. Balancing the allocation of items may
prevent an agent who values an item greatly from being al-
located it.

Example 4. Consider 2 agents and 2 items, a and b.
Suppose agent 1 has utility 0 for a and v for b, but agent
2 has utility 1 for a and v − 1 for b where v > 2. Note that
both agents have the same sum of utilities. If the agents bid
sincerely, then agent 2 gets an expected utility of just 1 and
envies ex ante agent 1’s allocation which gives agent 2 an
expected utility of v − 1. As v is unbounded, agent 2 does
not have bounded envy ex post or ex ante of agent 1.

As opposed to this negative result, we show in [1] that the
Balanced Like mechanism is both envy free ex ante and
bounded envy free ex post with constant 1, supposing 0/1
utilities and sincere agents. In here, we add on these results
by discussing how does the strategic play of the agents in-
fluences fairness of our allocations with 0/1 utilities. The
Balanced Like mechanism is no longer envy free ex ante
in this case.

Example 5. Suppose we are allocating items a, b and c
in alphabetical order between agents 1, 2 and 3, with the fol-
lowing utilities. Agent 1 improves her outcome from 13

12
to

a b c
1 1 1 1
2 1 0 1
3 1 1 0

9
8

by bidding only for b and c.
Supposing the agents bid sin-
cerely, the expected utility of
agent 1 of any possible alloca-
tion of a is 1

3
. Suppose next

that agent 1 does strategically not bid for a and agents 2 and
3 bid sincerely for it. Now, her expected utility of each allo-
cation of a is 1

2
compared to value of 0 which is her expected

utility of her own allocation of that item. She envies them
ex ante!

Note that the Balanced Like mechanism is still bounded
envy free ex post supposing the agents act strategically in
this setting. The set of all possible allocations supposing
each simple pure Nash equilibrium is a subset of the set
of all possible allocations supposing sincere play. As any
allocation in the latter set is envy free ex post, it follows
that any allocation in the former set is also envy free ex
post. Consequently, Balanced Like is bounded envy free
ex post and ex ante with constant 1 supposing strategic play.

To summarize, on the basis of envy-freeness, provided util-
ities are (not only) 0/1 (or close to these), we might consider
the Balanced Like mechanism to be somewhat (less) more
fair than the Like mechanism.

5. PROPORTIONALITY
Another notion of fairness is proportionality. A mecha-

nism is proportional ex post if each of the k agents receives
at least 1

k
of their total utility in any possible allocation. A

mechanism is proportional ex ante if each agent receives in
expectation at least 1

k
of their total utility. Also, a mecha-

nisms is c-proportional ex post/ex ante if there exists a con-
stant a such that whatever the input sequence of items π,
the following inequality holds

1

k
≤ c · ui(π)

Ui
+ a (1)



where ui(π)/Ui is the minimum ratio between the utility/
expected utility ui(π) an agent i receives on π and the sum
of her utilities Ui.

If a mechanism is proportional ex post/ex ante then it is c-
proportional ex post/ex ante with c between 0 and 1, whilst
if a mechanism is (c-proportional) proportional ex post then
it is (c-proportional) proportional ex ante. It is easy to show
that no randomized mechanism for indivisible items can be
proportional ex post: suppose we have one indivisible item
and two or more agents that bid sincerely for the item. It is
possible, however, that a mechanism is proportional ex ante.

With general utilities, the Like mechanism is proportional
ex ante supposing agents act sincerely. By comparison, the
Balanced Like mechanism is not proportional ex ante in
general, even with just 2 agents. Balancing the allocation of
items may prevent agents from being allocated items that
they value greatly.

Example 6. Consider 2 agents and 2 items, a and b.
Suppose agent 1 has utility 0 for item a and 1 for item b,
but agent 2 has utility 1

5
for item a and 4

5
for item b. Note

that the sum of the utilities for any agent is normalized to
1 unit. If agents bid sincerely, then agent 2 has an expected
utility of just 1

5
. The latter value is strictly less than 1

2
· 1

which is her discounted sum of utilities.

In order to estimate the amount of this negative effect, we
use c-proportionality ex ante. In fact, the Balanced Like
mechanism can be at worst not c-proportional ex ante for
any constant c even with 2 agents. Consider the fair division
setting in Example 6. Suppose that agent 2 assigns ε to the
first item and 1 − ε to the second one. There is a unique
allocation in which she gets an expected utility of ε, but the
sum of her utilities is 1. Hence, c is unbounded as ε goes to
zero.

Interestingly, the Balanced Like mechanism becomes
proportional ex ante supposing agents act sincerely and util-
ities are 0/1 (or close to these). This result follows from the
fact that the mechanism is envy free ex ante in this case.
The latter property implies proportionality.

Thus, on the basis of proportionality, we might consider
the Balanced Like mechanism to be somewhat as fair as
(less fair than) the Like mechanism when utilities are (not
only) 0/1 utilities (or close to these).

6. COMPETITIVENESS
A powerful technique to study online mechanisms is com-

petitive analysis (e.g. [12]). This identifies the loss in ef-
ficiency due to the data arriving in an online fashion. We
say that a randomized mechanism M for online fair division
is c-competitive from an egalitarian/utilitarian perspective
if there exists a constant a such that whatever the input
sequence of items π, the following inequality holds

SWOPT ≤ c · SWM (π) + a (2)

where SWM (π) is the egalitarian/utilitarian social welfare
of the mechanism M on π, and SWOPT is the optimal egali-
tarian/utilitarian social welfare of an offline assignment that
is independent on the arrival order of the items. We suppose
agents bid sincerely.

The Like mechanism is k-competitive when the number
of agents k is bounded, even with general utilities. In this
setting, the worst case for every agent is that every other

agent bids against them. Hence, the worst case is that their
expected social welfare is 1

k
the smallest sum of utilities. By

comparison, the best case for an agent is that they receive
the sum of their utilities. Hence, the competitive ratio from
both egalitarian and utilitarian perspectives is at worst k.
For example, with 2 agents and general utilities, the Like
mechanism is 2-competitive. That is, the expected egalitar-
ian or utilitarian social welfare is at least 50% of the optimal
(offline) allocation. In contrast, the Balanced Like mech-
anism is not competitive with general utilities and just 2
agents. To see that, let us consider the following example.

Example 7. Consider the fair division of 4 items in al-
phabetical order between agents 1 and 2, with the following
utilities and where ε > 0 is a small positive constant. Note

a b c d
1 0 ε ε 1 − 2ε
2 ε 1 − 2ε 0 ε

that the sum of the utilities for
any agent is normalized to 1
unit. The optimal egalitarian
(utilitarian) offline allocation
gives item d to the first agent

and item b to the second agent. This has an egalitarian
(utilitarian) welfare of 1 − ε unit (2 − 2ε units). On the
contrary, Balanced Like achieves very small egalitarian
(utilitarian) welfare of just 2ε (4ε) units.

Only when restricted to 0/1 utilities, the Balanced Like
mechanism is k-competitive from egalitarian perspective.
Suppose k agents and k items. Let agent i bids sincerely
with 1 for the first k− i+1 items and with 0 for the remain-
ing ones. The egalitarian welfare is 1

k
that is the expected

utility of agent k whereas the optimal (offline) mechanism
allocates exactly one item to each agent achieving egalitarian
welfare of 1. In this binary setting, every allocation of Like
or Balanced Like achieves the optimal utilitarian welfare.

The competitive ratio supposes that the agents act sin-
cerely. An assumption that may not always hold. For this
purpose, we consider the price of anarchy, which is essen-
tially the competitive ratio when agents bid strategically.
Thus, the price of anarchy is closely related to the competi-
tive ratio and measures how the efficiency of a decentralized
system degrades due to selfish behaviour of its agents com-
pared to imposing a centralized solution based on sincere
preferences (e.g. [10]). From an egalitarian (a utilitarian)
perspective, the price of anarchy of an online fair division
mechanism is the ratio between the optimal egalitarian (util-
itarian) social welfare, and the smallest egalitarian (utilitar-
ian) social welfare of any equilibrium strategy.

We study lower bounds of the price of anarchy of these
mechanisms in [1]. For example, with k agents, the price of
anarchy of the Like mechanism is k for egalitarian welfare,
and for utilitarian welfare is greater than k−ε for any ε > 0.
For the Balanced Like mechanism, we have the following
lower bounds on the price of anarchy. With 0/1 utilities and
k agents, the price of anarchy of the Balanced Like mech-
anism from an egalitarian perspective is at least k. Similarly
to the Like mechanism, with general utilities and k agents,
the price of anarchy of the Balanced Like mechanism from
a utilitarian perspective is greater than k− ε, for any ε > 0.

Finally, with 0/1 utilities and either mechanism, it is a
dominant strategy for agents to bid only for (a subset of
the) items for which they have utility. Hence, both mech-
anisms achieve the optimal utilitarian social welfare and,
hence, there is no price of anarchy from a utilitarian per-
spective in this setting.



7. EXPERIMENTS
To determine the impact on envy-freeness, proportional-

ity and social welfare of these mechanisms and to determine
if the Balanced Like mechanism outperforms the Like
mechanism in practice, we ran some experiments. We used a
wide range of problem instances: random 0/1 utilities, ran-
dom Borda utilities, random general utilities, correlated 0/1
and Borda utilities generated with the Pólya-Eggenberger
urn model, as well as 0/1 and Borda utilities from Pre-
fLib.org [11]. For reasons of space, we are selective in our
choice and report here just some of the results. These are
over the classes (1) random 0/1 utilities, (2) Borda utilities
from PrefLib.org and (3) random general utilities where the
maximal possible utility of an agent is equal to the number
of items minus one. We observed however similar trends
with the other classes.

We varied the number of agents from 2 to 5 and the num-
ber of items from 2 to 10. At each data point, we sampled
100 instances, computing the optimal (offline) allocation,
and all simple pure Nash equilibria by brute force. We re-
port on three experiments. In the first one, we estimate the
envy-freeness bounds. In the second one, we study the pro-
portionality of the mechanisms. And, in the third one, we
conduct empirical analysis in order to estimate their impact
on the welfares. Each figure in this section contains two
graphs. In the left graph of each figure, we fix the number
of agents to 5 and vary the number of items. In the right
graph of each figure, we fix the number of items to 10 and
vary the number of agents. In both graphs of each figure,
there are 4 trends corresponding to the average performance
of (1) Like over the instances (“like”), (2) Balanced Like
over the instances (“balanced”), (3) Balanced Like over
the best simple pure Nash equilibrium of the instances (“bal-
anced+”) with respect to the egalitarian welfare and (4)
Balanced Like over the worst simple pure Nash equilib-
rium of the instances (“balanced-”) with respect to the egal-
itarian welfare.

In Table 1, we summarize the analytical results from [1]
together with the additional ones from this paper (marked
with ?).

mechanism Like Balanced Like
utilities binary general binary general

strategy-proof X X × ×
envy free (ex post) × × × ×
envy free (ex ante) X X X ×

bound envy free (ex post) × × X ×
proportional (ex post) ×? ×? ×? ×?
proportional (ex ante) X? X? X? ×?
c-proportional (ex ante) 1? 1? 1? ∞?

c-competitive (e) 1 k k? ∞
c-competitive (u) 1 k 1 ∞

price of anarchy (e) k k k k
price of anarchy (u) 1 k 1 k

Table 1: Overview of results for k agents. (e) =
egalitarian, (u) = utilitarian.

7.1 Experiment 1: Envy-freeness
Both of our mechanisms are more or less fair in some

sense, depending on the utilities the agents have for the
items and their strategies. Therefore, in this subsection, we
study the bounds of the envy freeness ex post. These bounds
also limit the envy freeness ex ante. In particular, we com-
pute the fairness bounds of the Like and Balanced Like

mechanisms (“like” and “balanced”) supposing sincere play
and the Balanced Like mechanism supposing the worst
(“balanced-”) and the best (“balanced+”) simple pure Nash
equilibrium . We plot arithmetic means in all graphs in this
experiment. The standard deviation does not exceed 1% of
its corresponding mean for each data point.

7.1.1 Binary utilities: random
Figure 2 reports the bounds of the fairness in the set-

ting with random 0/1 utilities. As a very first note, the
Balanced Like mechanism is bounded envy free ex post
with constant 1 supposing both sincere and strategic play
(“balanced”, “balanced-” and “balanced+”). This result is
confirmed by the corresponding trends in Figure 2. On the
contrary, the Like mechanism (“like”) is increasingly unfair
ex post. Its average bound increases with the number of
items (left graph), starting from 2 for 2 items and reaching
a bit more than 7 for 10 items. We believe the trend of this
bound will increase even further provided that there are even
more than 10 items available. When varying the number
of agents, however, this trend is more stable (right graph),
starting from nearly 6 for 2 agents, reaching almost 8 for 4
agents and decreasing smoothly till around 7 for 5 agents.
Within this setting, the worst Like outcomes (“like”) are
much less fair on average than the ones of Balanced Like
(“balanced”). Also, the strategic play (“balanced-” or “bal-
anced+”) has a small effect on envy-freeness compared to
the sincere play (“balanced”).
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Figure 2: Envy-freeness bounds of Balanced Like
and Like mechanisms: random 0/1 utilities.

7.1.2 Borda utilities: PrefLib
With general utilities neither mechanism is bounded envy

free ex post. Moreover, Borda utilities (e.g [2]) are a special
case of general utilities in which the sum of the utilities of
each agent is quadratic in the number of items. Indeed, the
Borda utilities for m items are 0, 1, . . . ,m−1 and hence their
sum is equal to m · (m− 1)/2.

Figure 3 depicts two graphs. In the left graph, we can
clearly see that Like (“like”) achieves this quadratic bound
for each number of items. For example, this bound is 45
for 10 items. On the contrary, the Balanced Like mech-
anism partially restores fairness by significantly decreasing
this bound. For the sake of comparison, its value is nearly
15 for 10 items (≈ 67% lower bound) supposing sincere play
(“balanced”) and close to 10 for the same number of items
(≈ 78% lower bound) supposing strategic play (“balanced-”
and “balanced+”). There is almost no difference between
the bounds achieved following the best and the worst sim-
ple pure Nash equilibria in this case. In the right graph,
however, we observe that Like mechanism (“like”) achieves



almost a constant bound for each number of agents that is
the maximal value of 45. On the other extreme, the bound
of Balanced Like mechanism starts from 0 for 2 agents
and reaches slightly more than 10 for 5 agents, supposing
the agents act strategically (“balanced-” and “balanced+”).
In between the two extremes, it lies the fairness bound of
around 15 that is achieved in case the agents are sincere
(“balanced”). Strategic play seems to improve fairness with
around 34% for 5 agents!
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Figure 3: Envy-freeness bounds of Balanced Like
and Like mechanisms: Borda utilities.

7.1.3 General utilities: random
Our mechanisms are again not bounded envy free ex post

in this setting. These results are confirmed by Figure 4.
The Like mechanism (“like”) is less unfair in the presence
of random general utilities than it was in the previous set-
ting with Borda utilities. For instance, the maximal average
bound is now around 40 for 10 items (left graph) and nearly
25 for the same number of items and 2 agents (right graph),
compared to 45 achieved with Borda utilities. The trends
corresponding to these bounds are however similar when we
run the Balanced Like mechanism, with a noticeable im-
provement. The bound is 5 for 2 agents in this setting com-
pared to 15 for the same number of agents, Borda utilities
and supposing the agents are sincere (“balanced”). This is
67% less! In other words, the agents envy each other much
more in the Borda setting. The fairness bounds that corre-
spond to the strategic profiles are even lower. For 10 items,
these are around 50% (≈5 against ≈10) lower in this setting
than in the Borda one.
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Figure 4: Envy-freeness bounds of Balanced Like
and Like mechanisms: random general utilities.

7.2 Experiment 2: Proportionality
The proportionality ex ante of our mechanisms also de-

pends on the utilities the agents have for the items. For this
purpose, we focus on this property in here and compute the
ratio that is reciprocal of c measuring how proportional ex

ante are the Like (“like”) and Balanced Like (“balanced”)
mechanisms over the classes of instances we select. In simi-
lar fashion, we further compute the ratios corresponding to
the worst (“balanced-”) and the best (“balanced+”) simple
pure Nash equilibria with respect to the egalitarian welfare.
A value of a ratio of at least 1 indicates proportionality ex
ante. We plot geometric means this time. The standard de-
viation is less than 1% of its respective mean for each data
point.

7.2.1 Binary utilities: random
With random 0/1 utilities, both mechanisms are propor-

tional ex ante. We note that the results in Figure 5 con-
firm that because the value of the ratio for each data point
is greater than 1. The Balanced Like mechanism (“bal-
anced”) is nearly as proportional as Like (“like”) in both
graphs in Figure 5 supposing the agents are sincere. Their
trends both pass over the threshold line. The value of the
ratio increases once the agents are being strategic with both
the number of items (left graph) and the number of agents
(right graph). For example, its value is around 1.7 (1.4) for
10 items according to the best (worst) strategic play (“bal-
anced+” (“balanced-”)) compared to approximately 1.2 for
the same number of items and sincere play (“balanced”).
This is approximately 42% (17%) better than the sincerity.
Another interesting observation at this data point is that the
best (“balanced+”) strategic play achieves nearly 21% more
proportional allocations than the ones achieved according to
the worst (“balanced-”) profile.
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Figure 5: Proportionality of Balanced Like and Like
mechanisms: random 0/1 utilities.

7.2.2 Borda utilities: PrefLib
With general utilities, Like is proportional ex ante and

Balanced Like is not. There are two interesting notes in
Figure 6. First, the strategic play of the agents in the best
case (“balanced+”) often results in as proportional alloca-
tions as the ones achieved in the worst case (“balanced-”).
An exception is when the number of items is 7 (left graph).
At this data point, the value of the ratio is below 1.1 in the
best case compared to more than 1.2 in the worst case. Be-
sides this possible outlier, both strategic trends improve the
proportionality ratio compared to the sincere profile (“bal-
anced”). Second, the proportionality ratio goes below the
threshold of 1 supposing sincerity (“balanced”) and num-
ber of items more than 7 (left graph). We believe that this
trend will cross the threshold line more often in the presence
of more items. When varying the number of agents (right
graph), the trends corresponding to the strategic profiles
(“balanced-” and “balanced+”) again indicate for improved
ratios compared to the sincere trend (“balanced”).
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Figure 6: Proportionality of Balanced Like and Like
mechanisms: Borda utilities.

7.2.3 General utilities: random
Similarly to the previous setting, Like is proportional ex

ante and Balanced Like is not in this setting. Hence,
one would expect that the results in here are similar to
the ones in the previous setting. However, we can observe
that this is not the case based on Figure 7. The strategic
play of the agents improves significantly the proportionality
rate this time. Both the best (“balanced+”) and the worst
(“balanced-”) strategic profiles achieve a ratio of nearly 2
for 10 items compared to almost 1.1 that is obtained when
we suppose sincere play (“balanced”). This improvement
is about 82% versus only 21% achieved in the setting with
Borda utilities! In addition, the trend corresponding to ”bal-
anced“ passes over the unit threshold for any number of
items or agents (left and right graphs). This implies that
Balanced Like mechanism is proportional ex ante within
this experimental setting and supposing sincere play. It com-
petes with the Like mechanism which again is confirmed to
be proportional ex ante in both graphs. To sum up, the
strategic play seems to improve the proportionality of the
outcomes when using Balanced Like .
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Figure 7: Proportionality of Balanced Like and Like
mechanisms: random general utilities.

7.3 Experiment 3: Competitivenss
This section reports on the impact our mechanisms have

on social welfare from both utilitarian and egalitarian per-
spective. Recall that each simple pure Nash equilibrium
optimizes the utilitarian welfare with 0/1 utilities. As a re-
sponse to that, we compute only the egalitarian welfare in
this case. With general utilities, we compute both of them.
In all settings here, we compute the reciprocals of (1) the
competitive ratios (“like” and “balanced”), (2) the price of
anarchy (“balanced-”) and (3) the ratio between the egalitar-
ian (utilitarian) welfare of the best simple pure Nash equi-
librium and the optimal allocation (“balanced+”). As these
are all ratios, we plot geometric means in all our graphs.

The arithmetic means are similar. The standard deviation
does not exceed 1% of its corresponding mean for each data
point.

7.3.1 Binary utilities: random
Figure 8 confirms that Balanced Like (“balanced”) im-

proves the egalitarian welfare compared to Like (“like”) sup-
posing sincere or strategic play of the agents. As an exam-
ple, the competitive ratio increases from around 0.7 to 0.85
on average (≈ 21% better) supposing that instead of Like
(“like”) we run Balanced Like (“balanced”) for 10 items.
Also, the strategic play of the agents often increases the wel-
fare even in the worst case (“balanced-” compared to “bal-
anced”), though the effect is small. With 5 agents and 10
items, the strategic profiles achieve ratios around 0.9 versus
0.85 reached by the trend of the sincere profile.

Note that each utility value of an instance from this class
is 1 with probability 0.5. We believe that ranging this prob-
ability from 0 to 1 would not deliver significantly different
results than the ones we report here. The rationale for that
is the small welfare cost incurred when supposing strategic
play.

2 3 4 5 6 7 8 9 10
Number of items

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
at

io

like
balanced
balanced-
balanced+

2 3 4 5
Number of agents

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
at

io

like
balanced
balanced-
balanced+

Figure 8: Egalitarian price of anarchy and competi-
tive ratio of Balanced Like and Like mechanisms.

7.3.2 Borda utilities : PrefLib
Borda utilities are widely used in the literature (e.g. [2])

and therefore we conduct experiment in order to establish
how well Like and Balanced Like perform in this setting.
Figures 9 and 10 plot the respective ratios for both the egal-
itarian and utilitarian welfares, respectively.
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Figure 9: Egalitarian price of anarchy and competi-
tive ratio of Balanced Like and Like mechanisms.

For the Balanced Like mechanism, one can see how the
strategic play of the agents in this case (“balanced-” and
“balanced+”) has a strong negative impact on the egalitar-
ian welfare compared to the case in which the agents act
sincerely (“balanced”). For 10 items, the decrease is from
nearly 0.7 to slightly more than 0.45. This results in ap-



proximately 36% lower egalitarian value which is a signifi-
cant loss. At the same time, the worst and the best strategic
profiles deliver similar egalitarian values. It seems that the
agents are more strategic in the presence of general utilities
than with only 0/1 utilities as now they may be more willing
not to bid for items that they value low and are revealed at
earlier rounds in order to bias in their favour the allocation
of the following items that they may value high.

The effect the strategic play has on the utilitarian welfare
is negligible in this setting as noticed in Figure 10 (“balanced-
” and “balanced+” compared to “balanced”). The balanced
utilitarian ratios are higher than the unbalanced ones (“like”).
For 10 items, this improvement is almost 150%. To sum up,
with Borda utilities, strategic play is less helpful and can
result in lower egalitarian welfare. Nevertheless, Like re-
mained outperformed in this setting by Balanced Like .
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Figure 10: Utilitarian price of anarchy and compet-
itive ratio of Balanced Like and Like mechanisms.

7.3.3 General utilities: random
The last setting we present supposes the utilities are gen-

eral and generated uniformly at random. In this way, the
number of non-zero utility values in each instance from this
class is on average the same as in an instance with Borda
utilities. The difference is that now one non-zero utility
value can occur multiple times whereas it occurs exactly
once in a Borda profile. We believe that this class of in-
stances is more realistic than the one with Borda utilities as
normally the charities would request products they value in
a similar way. This implies that the utility profiles in here
would be more uniform than the Borda profiles and therefore
the agents are expected to be less strategic in this setting
than in the Borda setting. This intuition is confirmed by all
the graphs in Figures 11 and 12.
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Figure 11: Egalitarian price of anarchy and compet-
itive ratio of Balanced Like and Like mechanisms.

In Figure 11, the ratios corresponding to the ”balanced-”
and ”balanced+”tend to be very close to the one achieved by
”balanced”. The latter implies that the agents are less strate-
gic in this setting than they were in the setting with Borda

utilities. This results in smaller decrease of the egalitarian
welfare in this setting than in the Borda setting. Another in-
teresting note in this setting is that we have two clear picks
in the left graph in Figure 11. These form around points
corresponding to 5 and 10 items, respectively. Those values
are multiple of the numbers of agents, namely 5. Due to the
bias of the Balanced Like mechanism, we believe that the
agents get equal number of items around such points and
this results in higher value of the egalitarian welfare. This
effect, however, cannot be noticed in the graph on the right
as there we vary the number of agents for 10 items.

We draw similar conclusions for the utilitarian welfare
whose trends are shown in Figure 12. Despite the fact
that this one sums up all expected utilities and, therefore,
make it difficult to analyse individual allocations, we note
that the utilitarian welfare is improved significantly by run-
ning Balanced Like mechanism instead of Like mecha-
nism. Based on both graphs, this increase is around 100%
for 5 agents and 10 items.
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Figure 12: Utilitarian price of anarchy and compet-
itive ratio of Balanced Like and Like mechanisms.

8. RELATED WORK
There is a large literature on fair division of divisible and

indivisible goods. Almost all studies however assume that all
the goods are present initially. As opposed to that, there are
a few exceptions. Walsh [14] has proposed an online model
of cake cutting. However, in this model the agents arrive
over time (not the items), and the goods are divisible (not
indivisible). Kash, Procaccia and Shah [9] have proposed
a related model in which agents again arrive over time, but
there are now multiple, homogeneous and divisible goods and
not multiple, heterogeneous and indivisible goods as in here.
Bounded envy freeness is closely related to the “single-unit
utility difference” property that Budish, Che, Kojima and
Milgrom [5] prove can be achieved in offline fair division
with any randomized allocation mechanism that is envy free
ex ante.

The Like and Balanced Like mechanisms take an item-
centric view of allocation. They iterate over the items, al-
locating them in turn to agents. By comparison, there are
agent-centric mechanisms like the sequential allocation pro-
cedure which iterate over the agents, allocating items to
them in turn (e.g [4]). These mechanisms have attracted
considerable attention in the AI literature recently (e.g. [2,
8]). As our matching problem is one-sided (agents have pref-
erences over items, but not vice-versa), we cannot immedi-
ately map results from there to here. It would be interesting
future work to consider how such agent-centric mechanisms
could be modified to work with online fair division problems.



9. CONCLUSIONS
Motivated by our work with local Food Bank charities,

we have studied a simple online model of fair division in
which a mechanism allocates packed food to agents based
on their preferences. In this article, we have presented two
simple such mechanisms and conducted empirical study of
properties such as envy-freeness, proportionality and com-
petitiveness. Based on our results, we might consider the
Balanced Like mechanism if the items can be packaged
together so that agents have similar utility for all packages,
and that we should otherwise prefer the Like mechanism
when this is not possible. With similar utilities, fairness is
improved by the Balanced Like mechanism. This effect is
strongly desired in practice as it helps quantifying both the
social and individual prosperities. We established that this
is the case even when the agents are strategic. In future,
we plan to look into even more elaborate mechanisms than
Balanced Like , improving the welfares even further.
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