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ABSTRACT
We study the complexity of voting control problems in multi-peaked
elections. In particular, we focus on the constructive/destructive
control by adding/deleting votes under Condorcet, Maximin and
Copelandα voting systems. We show that the NP-hardness of
these problems (except for the destructive control by adding/deleting
votes under Condorcet, which is polynomial time solvable in the
general case) hold even in κ-peaked elections with κ being a very
small constant. Furthermore, from the parameterized complexity
point of view, our reductions actually show that these problems are
W[1]-hard in κ-peaked elections with κ = 3, 4, with respect to the
number of added/deleted votes.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; G.2.1 [Combinatorics]: Combinatorial algorithms;
J.4 [Computer Applications]: Social Choice and Behavioral Sci-
ences

General Terms
Algorithms

Keywords
single-peaked election, parameterized complexity, multi-peaked elec-
tion, Condorcet, Maximin, Copeland

1. INTRODUCTION
Voting is a common method for preference aggregation and col-

lective decision-making, and has applications in political elections,
multiagent systems, web spam reduction, etc. For instance, in mul-
tiagent systems, it is often necessary for a group of agents to make
a collective decision by means of voting in order to reach a joint
goal (see [5] for a detailed discussion). Unfortunately, by Arrow’s
impossibility theorem [1], there is no voting system which satis-
fies a certain set of desirable criteria (see [1] for the details) when
more than two candidates are involved. One possible way to by-
pass Arrow’s impossibility theorem is to restrict the domain of the
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preferences, for instance, the single-peaked domain introduced by
Black [2]. Intuitively, in a single-peaked election, one can order
the candidates from left to right such that every voter’s preferences
increase first and then decrease after some point as the candidates
are considered from left to right.

Recently, the complexity of various voting problems in single-
peaked elections has been attracting attention of many researchers
from both theoretical computer science and social choice commu-
nities [3, 12, 16, 18, 24]. It turned out that many voting problems
beingNP-hard in general become polynomial-time solvable when
restricted to single-peaked elections [3, 16]. However, most elec-
tions in practice are not purely single-peaked, which motivates re-
searchers to study more general models of elections. We refer read-
ers to [4, 6, 7, 10, 14] for some variants of single-peaked model.
Recent complexity studies of voting problems in these variants of
single-peaked model can be found in [6, 14, 25, 27].

In this paper, we consider a natural generalization of single-
peaked elections, where more than one peak may occur in each
vote. This generalization might be relevant for many real-world ap-
plications. For example, consider a group of people who are willing
to select a special day for an event. In this setting, each voter may
have several special days which he/she prefers for some reason, and
the longer the other days away from these favorite days, the less
they are preferred by the voter. Recently Egan [9] has discussed
2-peaked political elections in detail. We call this generalization
κ-peaked elections, where at most κ peaks are allowed in each vote
with respect to a given order over all candidates.

We mainly study control problems for Condorcet, Copelandα

and Maximin voting restricted to κ-peaked elections. In a control
attack, there is an external agent (e.g., the chairman in an election)
who is willing to influence the results of the election by doing some
tricks. There would be two goals that the external agent wants to
reach. One goal is to make some distinguished candidate win the
election. The other goal would be to make someone lose the elec-
tion. The former case is called a constructive control and the latter
case is called a destructive control. Moreover, the tricks involved
in a control attack include adding some new, unregistered votes to
the registered votes, or deleting votes from the registered votes. We
refer readers to [11, 19, 20] for further information on control at-
tacks.

In the general case (the domain of the preferences is not re-
stricted), both the constructive control and the destructive control
by adding/deleting votes are NP-hard for Copelandα for every
0 ≤ α ≤ 1 and Maximin [13, 15]. Concerning the Condorcet vot-
ing, the constructive control by adding/deleting votes is NP-hard



while the destructive control by adding/deleting votes is polyno-
mial time solvable in the general case [20]. In contrast, most of
these problems become polynomial time solvable when restricted
to single-peaked elections [3].

Motivated by the NP-completeness in the general case and the
polynomial-time solvability in the single-peaked case, we study
the complexity of control problems for Condorcet, Copelandα and
Maximin voting in κ-peaked elections with respect to various val-
ues of κ, aiming at exploring the complexity border for these con-
trol problems. In particular, we prove that both the constructive and
the destructive control by adding votes for Maximin and Copelandα

for all 0 ≤ α ≤ 1, and the constructive control by adding votes for
Condorcet areNP-hard in 3-peaked elections. Moreover, both the
constructive control and the destructive control by deleting votes
for Maximin and Copelandα for all 0 ≤ α ≤ 1, and the con-
structive control by deleting votes for Condorcet are NP-hard in
4-peaked elections. In fact, our reductions imply more stronger
results. Precisely, our reductions actually show that all these NP-
hard problems in 3,4-peaked elections areW[1]-hard, with respect
to the number of added/deleted votes (see Section 2 for the discus-
sion of parameterized complexity). See Table 1 for a summary of
our main results.

Parameterized complexity of voting control problems have been
extensively studied recently (See Section 2 for further details on
parameterized complexity). In particular, Liu and Zhu [22] proved
that both the constructive control and the destructive control by
adding/deleting votes for Maximin are W[1]-hard in the general
case, with respect to the number of added/deleted votes. Moreover,
Liu et al. [21] proved that the constructive control by adding/deleting
votes for Condorcet isW[1]-hard in the general case, with respect
to the number of added/deleted votes. However, their reductions
do not apply to 3,4-peaked elections. In fact, to show the W[1]-
hardness of the control problems in 3,4-peaked elections, we use
technically completely different strategies. Liu and Zhu also stud-
ied parameterized complexity of other voting problems (see [23]).
Recently, Yang and Guo [26] has also studied the complexity of
control problems in κ-peaked elections. However, they considered
only the r-approval voting systems. We complement their work
by investigating the Condorcet, Maximin and Copelandα voting.
A special case of 2-peaked elections, called swoon-SP elections,
were studied by Faliszewski et al. [14]. Yang and Guo [27] studied
complexity of control problems in elections with bounded single-
peaked width. Our work shares the same motivation of theirs—
exploring the complexity border of the control problems between
single-peaked elections and general elections. Therefore, our work
can be also considered as a complement to theirs.

2. PRELIMINARIES
Elections: An election is a tuple E = (C,ΠV), where C is a set

of candidates and ΠV is a multiset of votes casted by a set of voters
V . Each vote is defined as a linear order � (to represent a voter’s
preference) over C. For two candidates c, c′ and a vote �, we say c
is ranked above c′ if c � c′. We useNE(c, c′) to denote the number
of votes ranking c above c′ in E . We drop the index E when it is
clear from the context. We say c beats c′ if N(c, c′) > N(c′, c),
and c ties c′ if N(c, c′) = N(c′, c). Moreover, the position of a
candidate c in a vote � is defined as |{c′ ∈ C | c′ � c}| + 1. A
voting correspondence1 ϕ is a function that maps an election E =

1A related terminology is voting rule which is defined as a function
mapping an election to a single candidate. A voting correspondence
can be easily modified to a voting rule using a certain tie-breaking
method.
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Figure 1: A 2-peaked vote
(c3, c4, c7, c6, c8, c9, c5, c2, c10, c1)
with respect to the 2-harmonious
order L = (c1, c2, . . . , c10).
Here, L is partitioned into L1 and
L2 with L1 = (c1, c2, c3, c4, c5)
and L2 = (c6, c7, c8, c9, c10).

(C,ΠV) to a non-empty subset ϕ(E) of C. We call the elements in
ϕ(E) the winners of E . If ϕ(E) contains only one winner, we call
it a unique winner; otherwise, we call them nonunique winners.

For simplicity, we also use (a1, a2, ..., an) to denote the linear
order a1 � a2 �, ...,� an. For a vote � and a subset C ⊆ C, let
� (C) denote the partial vote of � restricted to C. For example,
for a vote � defined as (a, b, c, d, e), we have that � ({b, d, e}) =
(b, d, e).

Single-peaked/κ-peaked elections. An election (C,ΠV) is single-
peaked if there is a linear order L of C such that for every vote �v
in ΠV and every three candidates a, b, c ∈ C with a L b L c or
c L b L a, c �v b implies b �v a, where a L b means a is ordered
before b in L. The candidate ordered in the first position of �v is
the peak of �v with respect to L.

For an order L = (c1, c2, . . . , cm) of C and a vote �v , we
say �v is κ-peaked with respect to L, if there is a κ′-partition
L1 = (c1, c2, ..., ci), L2 = (ci+1, ci+2, ..., ci+j), . . . , Lκ′ =
(ct, ct+1, ..., cm) of L such that κ′ ≤ κ and �v (C(Lx)) is single-
peaked with respect to Lx for all 1 ≤ x ≤ κ′, where C(Lx) is the
set of candidates appearing in Lx. See Fig. 1 for an example.

An election is κ-peaked if there is an orderL of C such that every
vote in the election is κ-peaked with respect to L. Here L is called
a κ-harmonious order.

(Weak) Condorcet Winner: A Condorcet winner is a candidate
which beats every other candidate. An election has either no Con-
dorcet winner or only one Condorcet winner. A weak Condorcet
winner is a candidate which is not beaten by any other candidate.

Voting Correspondences: We mainly study the following vot-
ing correspondences.

Copelandα (0 ≤ α ≤ 1): For a candidate c, let B(c) be the set of
candidates who are beaten by c and T (c) the set of candidates
who tie with c. The Copelandα score of c is then defined as
|B(c)|+α · |T (c)|. A Copelandα winner is a candidate with
the highest score.

Maximin: For a candidate c, the Maximin score of c is defined
as minc′∈C\{c}N(c, c′). A Maximin winner is a candidate
with the highest Maximin score.

Problem Definitions: Problems studied here are characterized
by four factors, CC|DC specifying constructive or destructive con-
trol, AV|DV specifying adding or deleting votes, ϕ specifying the
voting correspondence, and UNI|NON specifying the unique-winner
or nonunique-winner models. For example, CCAV-ϕ-UNI denotes
the problem of constructive control by adding votes for the unique-
winner model under the voting correspondence ϕ. In the inputs of
all these problems, we have a set C of candidates, a distinguished
candidate p, and an integer R ≥ 0. In the deleting votes case, there
is only one multiset ΠV1 of (registered) votes in the input, while
the adding votes case distinguishes two multisets of votes, ΠV1 the
multiset of registered votes and ΠV2 the multiset of unregistered
votes. In addition, in both cases, a κ-harmonious order L is given



number of peaks κ

Evidence forκ = 1 κ = 3 κ ≥ 4

for all
CC DC CC DC

AV DV AV DV AV DV AV DV κ = 3 κ = 4

Condorcet

P

W[1]-hard P W[1]-hard P Theorem 3 Theorem 6

Maximin W[1]-hard ? W[1]-hard
?

W[1]-hard Theorem 1 Theorem 4

Copelandα (α = 1) W[1]-hard W[1]-hard W[1]-hard Theorem 2 Theorem 5

Table 1: A summary of the complexity of control problems under Condorcet, Maximin and Copelandα in κ-peaked elections. Here,
“P" stands for polynomial-time solvable. Our results are in bold. Moreover, our results for Copelandα apply to all 0 ≤ α ≤ 1.
TheW[1]-hardness results of the control by adding/deleting votes are with respect to the number of added/deleted votes. Note that
when κ = m/2 + 1, κ-peaked elections are the general elections. The polynomial time solvability results in single-peaked elections
(1-peaked elections) are from [3] (The result for Copelandα only holds for α = 1. The complexity for 0 ≤ α < 1 is unknown). The
polynomial time solvability of the destructive control by adding/deleting votes for Condorcet is from [20]. The entries filled with “?"
means the corresponding problems are open.

in advance. Moreover, in the deleting votes case, all votes in ΠV1
are κ-peaked with respect L, and in the adding votes case, all votes
in both ΠV1 and ΠV2 are κ-peaked with respect toL. The goal here
is to make pwin (CC) or lose (DC) the election by adding at mostR
unregistered votes (AV) or deleting at most R votes (DV). Strictly
speaking, (weak) Condorcet is not a voting correspondence, since
the winner set could be empty. However, the complexity of control
problems has been widely studied for (weak) Condorcet since the
seminal paper by Bartholdi et al. [20]. We also study it here due
to the importance of the concept of (weak) Condorcet winner. In
this case, the constructive control aims to make the distinguished
candidate the Condorcet winner (UNI) or a weak Conodrcet win-
ner (NON), while the destructive control aims to prevent the dis-
tinguished candidate from being the Condorcet winner (UNI) or a
weak Condorcet winner (NON).

Parameterized Complexity: A parameterized problem is a lan-
guageL ⊆ Σ∗×N, where Σ is a finite alphabet. The first component
I ∈ Σ is called the main part of the problem while the second com-
ponent k ∈ N is called the parameter. Downey and Fellows [8]
established the parameterized complexity theory, where the class
FPT (stands for fixed-parameter tractable) includes all parame-
terized problems which admit O(f(k) · |I|O(1))-time algorithms.
Here f(k) is a computable function. Another important parameter-
ized complexity class isW[1] which is the basic class for showing
fixed-parameter intractability results. A problem is W[1]-hard if
all problems inW[1] are FPT -reducible to the problem. We can
show a problem being W[1]-hard by giving an FPT -reduction
from anotherW[1]-hard problem.

Given two parameterized problemsQ andQ′, anFPT -reduction
from Q to Q′ is an algorithm that takes as input an instance (I, k)
of Q and outputs an instance (I ′, k′) of Q′ such that

(1) the algorithm runs in f(k) · |I|O(1) time; and
(2) (I, k) ∈ Q if and only if (I ′, k′) ∈ Q′; and
(3) k′ ≤ g(k), where g is a computable function in k.

All W[1]-hardness reductions in this paper are from the INDE-
PENDENT SET in 2-interval graphs which is W[1]-hard (and also
NP-hard) [17].

A 2-interval I is a union of 2 disjoint intervals of the real line.
We write I = {I1, I2} with I1, I2 disjoint intervals, and I = I1 ∪

I2. The endpoints of I is the endpoints of I1 union the endpoints
of I2. Given a pair of 2-intervals I = {I1, I2} and J = {J1, J2},
these two 2-intervals intersect if they share a common point, i.e. if
(I1 ∪ I2) ∩ (J1 ∪ J2) 6= ∅.

INDEPENDENT SET in 2-interval graphs
Input: A collection I = {I1, I2, ..., In} of 2-intervals.
Parameter: An integer k ≥ 0.
Question: Is there a subcollection I′ ⊆ I of size k so that no

two 2-intervals in I′ intersect?

Remarks: All the FPT -reductions in this paper take polyno-
mial time in both the main part and the parameter. Therefore, all
the FPT -reductions in this paper are also polynomial-time many-
one reductions, implying that allW[1]-hard problems shown in this
paper are also NP-hard. However, for ease of exposition, we only
explicitly state theW[1]-hardness results in the theorems.

3. 3-PEAKED ELECTIONS
This section studies control problems in 3-peaked elections un-

der Maximin, Condorcet and Copelandα voting. We first examine
the Maximin voting. It is known that both the constructive and the
destructive control by adding votes are NP-hard for Maximin in
general [13]. The following theorem shows that bothNP-hardness
hold even in 3-peaked elections. In fact, from the parameterized
complexity point of view, we prove that both problems areW[1]-
hard with respect to the number of added votes. The following
notations will be used in all FPT -reductions in this paper.

Let ( ) denote an empty order containing no element. For a linear
order A = (a1, . . . , an), let A[ai, aj ] (resp. A(ai, aj ], A[ai, aj)
andA(ai, aj)) with i ≤ j be the suborder (ai, ai+1, . . . , aj) (resp.
(ai+1, ai+2, . . . , aj) if i < j and () if i = j, (ai, ai+1, . . . , aj−1)
if i < j and () if i = j, and (ai+1, ai+2, . . . , aj−1) if i < j −
1 and () if j ≥ i ≥ j − 1), and let A[aj , ai] (resp. A[aj , ai),
A(aj , ai] and A(aj , ai)) be the reversed order of A[ai, aj ] (resp.
A(ai, aj ], A[ai, aj) and A(ai, aj)). For two linear orders A =
(a1, a2, ..., an) and B = (b1, b2, ..., bm) with A ∩ B = ∅, denote
by (A,B) the linear order (a1, a2, ..., an, b1, b2, ..., bm).

THEOREM 1. DCAV-Maximin-UNI, DCAV-Maximin-NON, CCAV-
Maximin-UNI and CCAV-Maximin-NON in 3-peaked elections are
allW[1]-hard with respect to the number of votes added.



P
re
fe
re
n
ce

q x1 xα−1 xα xβ xβ+1 xγ−1 xγ xδ xδ+1 x|Γ| p

Figure 2: An unregistered vote corresponding to a 2-interval.

PROOF. We first prove theW[1]-hardness for DCAV-Maximin-
UNI in 3-peaked elections by an FPT -reduction from INDEPEN-
DENT SET on 2-interval graphs. For a given instance F = (I =
(I1, I2, ..., In), k) of the INDEPENDENT SET problem on 2-interval
graphs, we construct an instance for DCAV-Maximin-UNI in 3-
peaked elections as follows. We denote by I1

i and I2
i the two

intervals of Ii. Let D(Ii) be the endpoints of Ii, and let Γ =

∪i∈[n]D(Ii). Moreover, let ~Γ = (x1, x2, ..., x|Γ|) be the order of
Γ with xi < xi+1 for all i ∈ [|Γ| − 1].

Candidates: C = Γ∪{p, q} where q is the distinguished candi-
date. Concretely, for each x ∈ Γ, we create a candidate. For ease
of exposition, we still use x to denote the corresponding candidate
of the endpoint x.

3-Harmonious Order: L = (q, ~Γ, p).
Registered Votes: We create 3k − 1 registered votes in total.

Concretely, we create 2k − 1 registered votes defined as L[q, p],
and k registered votes defined as (p,L[q, x|Γ|]). The comparisons
between every two candidates are summarized in Table 3. Let E be
the election with the registered votes.

p q xj(i < j) xj(i > j)
p - k k
q 2k − 1 - 3k − 1
xi 2k − 1 0 3k − 1 0

Table 2: Comparisons between candidates in the W[1]-
hardness proof for DCAV-Maximin-UNI in Theorem 1. Each
entry with row indicated by candidate c and column indicated
by candidate c′ isN(c, c′), the number of registered votes rank-
ing c above c′. Here, N(·) is based on the registered votes.

Unregistered Votes: The unregistered votes are created accord-
ing to the intervals in F . Precisely, for every 2-interval Ii =
{I1
i , I

2
i }, we create an unregistered vote. Let xα and xβ with

xα ≤ xβ denote the left endpoint and the right endpoint of I1
i

respectively, and xγ and xδ with xγ ≤ xδ denote the left endpoint
and the right endpoint of I2

i respectively. Without loss of general-
ity, assume that I2

i is on the right side of I1
i , that is xβ < xγ . The

unregistered vote �Ii corresponding to Ii is defined as

(L[xα, xβ ],L[xγ , xδ], p,L(xα, x1],L(xβ , xγ),L(xδ, x|Γ|], q).

See Fig. 2 for an illustration.
Number of Added Votes: R = k.
Now we come to show the correctness of the reduction. First

observe that q is the current winner with Maximin score 2k − 1.
Moreover, the Maximin score of q cannot increase by adding un-
registered votes to the election, since q is ranked below every other

candidate in every unregistered vote; and thus, q will have a Max-
imin score of 2k − 1 points in the final election. Furthermore,
every xi ∈ Γ cannot have a no less Maximin score than that of q by
adding at most k votes. This is because N(xi, q) = 0 with respect
to the registered votes; and thus, the maximum Maximin score of
every xi can be at most k in the final election. Therefore, the only
candidate which has chance to have a no less score than that of q is
the candidate p.

(⇒:) Suppose that F has an independent set S of size k. We
claim that q is no longer the unique winner after adding all unreg-
istered votes corresponding to S to the election E . Let ΠS = {�I |
I ∈ S} be the set of the unregistered votes corresponding to S,
and E ′ be the final election obtained from E by adding ΠS . Due to
the construction of the unregistered votes, for every xi ∈ Γ there is
at most one vote in ΠS which ranks xi above p. This implies that
NE′(p, xi) ≥ 2k−1 for every xi ∈ Γ. Moreover, since p is ranked
above q in every unregistered vote, we have that NE′(p, q) = 2k.
It is now easy to see that q is no longer the unique winner.

(⇐:) Suppose that q is not the unique winner after adding at
most k unregistered votes. Let ΠS be the unregistered votes added
to the election E . Due to the above analysis, we know that p is the
candidate which prevents q from being the unique winner in the
final election. Since q has a Maximin score 2k − 1 in E , for every
candidate xi ∈ Γ there has to be at least k − 1 votes in ΠS which
rank p above xi. Due to the construction of the unregistered votes,
this happens only if there is an independent set of size k in F .

The proof for DCAV-Maximin-NON is similar to the above one
with the difference that we create one less registered vote defined as
L[q, p]. To prove CCAV-Maximin-NON, we adopt the same reduc-
tion as for DCAV-Maximin-UNI but with p being the distinguished
candidate. To prove CCAV-Maximin-UNI, we adopt the same re-
duction as for DCAV-Maximin-NON and set p as the distinguished
winner.

Now we examine the Copeland control in 3-peaked elections.
Recall that in the general case, both the constructive control and
the destructive control by adding votes under Copelandα are NP-
hard for every 0 ≤ α ≤ 1 [15]. In the following, we prove that
both problems are not only NP-hard but also W[1]-hard even in
3-peaked elections, with respect to the number of added votes.

THEOREM 2. DCAV-Copelandα-UNI, DCAV-Copelandα-NON,
CCAV-Copelandα-UNI and CCAV-Copelandα-NON in 3-peaked elec-
tions are allW[1]-hard for every 0 ≤ α ≤ 1, with respect to the
number of added votes.

PROOF. We first show the proof for DCAV-Copeland0-NON in
3-peaked elections from an FPT -reduction from the INDEPEN-
DENT SET problem on 2-interval graphs. Given an instance F =
(I = (I1, I2, ..., In), k) of the INDEPENDENT SET problem on
2-interval graphs, we construct an instance for DCAV-Copeland0-
NON in 3-peaked elections as follows. The notations I1

i , I
2
i , D(Ii),Γ

and ~Γ hereinafter are defined in the same way as in the proof of
Theorem 1.

Candidates: C = Γ ∪ {p, q, y} where q is the distinguished
candidate.

3-Harmonious Order: L = (q, ~Γ, p, y).
Registered Votes: We create 3k − 3 registered votes in total.

Concretely, we create 2k−3 registered votes defined as (q, y,L[x1, p],
and k registered votes defined as (p, q, y,L[x1, x|Γ|]). It is easy
to verify that q is a Copeland0 winner (precisely, q is the current
unique winner). Let E be the election with the registered votes.
The comparisons are summarized in Table 3.

Unregistered Votes: The unregistered votes are created accord-
ing to the intervals in F . Precisely, for every 2-interval Ii =



p q xj(i < j) xj(i > j) y
p - k k
q 2k − 3 - 3k − 3
xi 2k − 3 0 3k − 3 0
y 2k − 3 0 3k − 3 -

Table 3: Comparisons between candidates in the proof for
DCAV-Copeland0-NON in Theorem 2. Each entry with row
indicated by candidate c and column indicated by candidate c′
is N(c, c′), the number of registered votes ranking c above c′.
Here, N(·) is based on the registered votes.

{I1
i , I

2
i }, we create an unregistered vote as follows. Let xα and xβ

with xα ≤ xβ denote the left endpoint and the right endpoint of I1
i

respectively, and xγ and xδ with xγ ≤ xδ denote the left endpoint
and the right endpoint of I2

i respectively. Without loss of general-
ity, assume that I2

i is on the right side of I1
i , that is, xβ < xγ . The

unregistered vote �Ii corresponding to Ii is defined as

(L[xα, xβ ],L[xγ , xδ], p, y,L(xα, x1],L(xβ , xγ),L(xδ, x|Γ|], q).

Number of Added Votes: R = k.
Now we show the correctness argument.
(⇒:) Suppose that F has an independent set S of size k. Con-

sider the election E ′ after adding all the unregistered votes ΠS =
{�I | I ∈ S} corresponding to S to E . Clearly, we have 4k − 3
votes in E ′. Since p is ranked above q and y in every unregistered
vote, p beats both q and y in E ′. Due to the construction of the un-
registered votes and the fact that S is an independent set, for every
xi ∈ Γ there is at most one unregistered vote in ΠS which ranks xi
above p. Therefore, p also beats every xi in E ′ by at least 2k − 1.
Summary all above, p beats every other candidate in E ′, implying
that q is no longer a Copeland0 winner.

(⇐:) Suppose that ΠS is the multiset of unregistered votes added
to the election which makes q no longer a Copeland0 winner. Let E ′
be the final election. We claim that p is the only candidate which
can prevent q from being a winner in E ′. Observe first that the
candidate q beats y and every xi in E ′. In this case, in order to
prevent q from being a Copeland0 winner, q has to be beaten by p
in E ′. However, once q is beaten by p in E ′, y is also beaten by p
in E ′. Hence, y cannot have a no less Copeland0 score than that
of q. In addition, since every xi ∈ Γ is beaten by y and q in E ′,
no one in Γ can prevent q from being a winner in E ′. Therefore,
the above claim holds. Since q beats every other candidate except
p, in order to make p have a no less score than that of q, p has
to beat every other candidate. This happens only if ΠS contains
k unregistered votes, and moreover, for every candidate xi there
is at most one vote in ΠS ranking xi above p. The latter condition
directly imply that the set of 2-intervals corresponding to ΠS forms
an independent set, and the former condition implies that |S| = k.
The proof for DCAV-Copeland0-NON is finished.

The above reduction does not apply to DCAV-Copeland0-UNI
directly, since, in this case, q could also become not a unique-
winner when there is no independent set of size k for E . To check
this, consider the situation where p is beaten by some x ∈ Γ (but p
beats every other candidate in Γ) in E ′. This can happen when we
add two unregistered votes corresponding to two 2-intervals which
intersect only at x to the election. In this situation, p beats every
other candidate except x and q beats every other candidate except
p, implying that q is no longer a unique winner. In order to over-
come this drawback for DCAV-Copeland0-UNI, we need to restrict
the 2-intervals in E in such a way that once two 2-intervals inter-

x1 x3 x7 x8x2 x4 x6x5

Figure 3: An illustration of the restriction on the 2-intervals
in theW[1]-hardness proof for DCAV-Copeland0-UNI in The-
orem 2. Once two 2-intervals intersect, they intersect at more
than one point (in a continuity interval). Therefore, for each in-
tersection of two 2-intervals, we create at least two candidates.

sect, they do not intersect at only one point. See Fig. 3 for an il-
lustration. This restriction does not change the W[1]-hardness of
the INDEPENDENT SET problem on 2-interval graphs [17]. Under
this restriction, once two unregistered votes corresponding to two
2-intervals that intersect are added to the election, p will be beaten
by at least two candidates in Γ, implying that p cannot prevent q
from being the unique Copeland0 winner if there is no independent
set of size k for F .

The reductions for the Copelandα control with 0 < α ≤ 1 are
similar to the above ones with the difference that we create further
polynomially many dummy candidates in every intersection of two
2-intervals.

Now we come to the Condorcet voting. The following theorem
summarizes our findings. Recall that in the constructive control
for Condorcet, the unique-winner model aims to make the dis-
tinguished candidate the Condorcet winner, while the non-unique
winner model aims to make p a weak Condorcet winner. In gen-
eral, the constructive control by adding votes under Condorcet is
NP-hard, while the destructive case turned out to be polynomial
time solvable. [20].

THEOREM 3. CCAV-Condorcet-UNI and CCAV-Condorcet-NON
in 3-peaked elections areW[1]-hard with respect to the number of
added votes.

PROOF. The proof for CCAV-Condorcet-UNI is exactly the same
as for CCAV-Copeland0-UNI. The proof for CCAV-Condorcet-NON
is similar to CCAV-Condorcet-UNI with the difference that we cre-
ate one more registered votes defined as (q, y,L[x1, p]).

4. 4-PEAKED ELECTIONS
In the previous subsection, we have discussed control by adding

votes in 3-peaked elections. In this section, we consider control
by deleting votes in 4-peaked elections for Condorcet, Copeland
and Maximin voting. We first examine the Maximin voting. It is
known that both the constructive control and the destructive control
by deleting votes are NP-hard for Maximin in general [13]. The
following theorem shows both problems areW[1]-hard even in 4-
peaked elections, with respect to the number of added votes.

THEOREM 4. CCDV-Maximin-UNI, CCDV-Maximin-NON, DCDV-
Maximin-UNI and DCDV-Maximin-NON areW[1]-hard in 4-peaked
elections, with respect to the number of deleted votes.

PROOF. Our reductions are again from INDEPENDENT SET on
2-interval graphs. We adopt another restriction on the 2-intervals
(different from the one in the proof of Theorem 2). For two 2-
intervals I and J , we say I covers J if J ⊆ I . See Figure 4 for
an illustration. The given instances are then restricted in a way so
that there are no two 2-intervals with one covers the other. This
restriction does not change theW[1]-hardness of the problem [17].



(a) (b) (c)

Figure 4: This figure shows all the three different ways of how
two 2-intervals intersect. The two 2-intervals (black and gray)
are draw at different levels for the sake of clarity. Nevertheless,
they are both defined on the real line.

p q xj(j > i) xj(j < i)
p - 2n− k + 2 2n− k + 2
q 2n - 2n+ 2
xi 2n 2n− k × ×

Table 4: Comparisons between candidates in the W[1]-
hardness proof for CCDV-Maximin-UNI and DCDV-Maximin-
NON in Theorem 4. The comparisons between xi and xj
are marked with ’×’ since they cannot be exactly determined.
However, the comparisons do not play any role in the correct-
ness proof.

Let F = (I = (I1, I2, ..., In), k) be a given instance of the
INDEPENDENT SET problem on 2-interval graphs. The follow-
ing reduction applies to both CCDV-Maximin-UNI and DCDV-
Maximin-NON. We will discuss the constructions for the other two
problems latter. In the following, I1

i , I
2
i , D(Ii),Γ = ∪iD(Ii) and

~Γ = (x1, x2, ..., x|Γ|) are defined in the same way as in the proof
of Theorem 1.

Candidates: C = Γ ∪ {p, q, x0}, where p is the distinguished
candidate in CCDV-Maximin-UNI, and q is the distinguished can-
didate in DCDV-Maximin-NON.

4-Harmonious Order: L = (q, x0, ~Γ, p).
Votes: We first create n votes defined as (L[x0, p], q), n − k

votes defined as (L[p, x0], q) and 2 votes defined as (p, q,L[x0, x|Γ|]).
Then we create 2n votes corresponding to the 2-intervals inF . Pre-
cisely, for every 2-interval Ii = {I1

i , I
2
i }, we create two votes �I1i

and �I2i as follows. Let xα and xβ with xα ≤ xβ denote the left
endpoint and the right endpoint of I1

i , respectively, and xγ and xδ
with xγ ≤ xδ denote the left endpoint and the right endpoint of
I2
i , respectively. Without loss of generality, assume that I2

i is on
the right side of I1

i , that is, xβ < xγ . Then, �I1i and �I2i are
respectively defined as

(L[q, xα−1],L(xβ , xγ),L(xδ, p],L[xα, xβ ],L[xγ , xδ]) and

(q,L[xα, xβ ],L[xγ , xδ], p,L[x0, xα−1],L(xβ , xγ),L(xδ, x|Γ|]).

In the following, let Π1 = {�I1i | i = 1, 2, ..., n} and Π2 = {�I2i |
i = 1, 2, ..., n}. Let E be the election with the above 4n − k + 2
votes. The comparisons are summarized in Table 4.

Number of deleted votes: R = k.
It is clear that q has the maximum Maximin score 2n and is thus

the unique Maximin winner. We now show the correctness for the
CCDV-Maximin-UNI.

(⇒:) Suppose that F has an independent set S of size k. We
claim that we can make p the unique Maximin winner by deleting
votes corresponding to S in Π1. Let ΠS = {�I1 | I ∈ S} be the
set of the votes corresponding to S in Π1, and let E ′ be the final
election obtained from E by deleting all votes in ΠS . Due to the
construction and the fact that S is an independent set, we have that
for every xi ∈ Γ there is at most one vote in ΠS which ranks p
above xi. This implies that NE′(p, xi) ≥ 2n − k + 1 for every

xi ∈ Γ. Moreover, since q is ranked above p in every vote in ΠS ,
NE′(p, q) = 2n− k + 2 and NE′(q, p) = 2n− k. Therefore, the
Maximin score of p is at least 2n− k+ 1 while the Maximin score
of q is at most 2n−k. Finally, since q is ranked above every xi ∈ Γ
in every vote in ΠS , we have that NE′(xi, q) = 2n − k, implying
that every xi has a Maximin score at most 2n − k. Summary all
above, we know that p is the unique winner in the final election E ′.

(⇐:) Suppose that p becomes the unique winner after deleting
at most k votes. Let ΠS be the set of the votes that are deleted. Let
E ′ be the final election obtained from E by deleting all votes in ΠS .
Observe first that ΠS contains no vote which ranks p above q, since
otherwise, NE′(p, q) ≤ 2n− k + 1 and NE′(q, p) ≥ 2n− k + 1,
contradicting with the fact that p is the unique winner in E ′. Since
we can delete at most k votes and the Maximin score of q is 2n
in the original election E , the final Maximin score of q is at least
2n− k. Since p is the unique winner in E ′, the Maximin score of p
is at least 2n − k + 1 in the final election E ′. Therefore, for every
xi ∈ Γ there is at most one vote in ΠS which ranks p above xi.
Due to the fact, we have the following claim.

Claim. ΠS contains no vote in Π2.
(Proof of the Claim.) We prove the claim by contradiction. Sup-

pose that �I2i ∈ ΠS ∩ Π2 is a vote corresponding to a 2-interval
Ii. Let A be the set of candidates which lie in the 2-interval Ii.
Due to the construction, all the candidates in Γ \ A are ranked be-
low p. Let Ij be another 2-interval which corresponds to another
vote �Iuj 6=�I2i . Let B be the set of candidates which lie in the
2-interval Ij . Due to the restriction of the instance, we know that
B \ A 6= ∅. Therefore, u 6= 1, since otherwise, both �Iuj and
�I2i rank p above every candidate in B \A. However, u cannot be
equal to 2 either, since otherwise, both �Iuj and �I2i rank p above
the candidate x0. See Figure 5 for an illustration.

q x0 xt p

(a)

q x0 xt p

(b)

Figure 5: An illustration of the Claim in the proof of Theorem
4. Here, t = |Γ|. In both figures (a) and (b), most comparisons
among the candidates in Γ are not explicitly showed. Moreover,
the figure (a) shows the case that u = 1 and the figure (b) shows
the case that u = 2. In either case, the candidates lie in the gray
interval are ranked below p in the two votes corresponding to
the red 2-interval and the blue 2-interval.

Due to the above claim, we know that ΠS ⊆ Π1. Let S be the set
of 2-intervals corresponding to ΠS . Since for every xi ∈ Γ there is
at most one vote in ΠS which ranks p above xi, there are no two 2-
intervals in S which intersect, implying that S is an independent set
for F . It remains to show that |S| = k, or equivalently, |ΠS | = k.
This holds, since otherwise, q would have a Maximin score at least
n− k+ 1 in E ′, while p has a Maximin score at most n− k+ 1 in
E ′, contradicting with the fact that p is the unique winner in E ′.

To check that the same reduction applies to DCDV-Maximin-
NON, observe first that no xi ∈ Γ can have a higher Maximin
score than that of q in the final election: since NE(xi, q) = 2n −
k,NE(q, p) = 2n and we can delete at most k votes, every xi
would have a Maximin score at most 2n − k and q would have a
Maximin score at least 2n−k in the final election. Due to this fact,
p is the only candidate which can prevent q from being a winner.
The above argument then works.

Now we discuss the reductions for CCDV-Maximin-NON and



p q xj(j > i) xj(j < i)
p - 2n− k + 1 2n− k + 1
q 2n - 2n+ 1
xi 2n 2n− k × ×

Table 5: Comparisons between candidates in the W[1]-
hardness proof for CCDV-Maximin-NON and DCDV-
Maximin-UNI in Theorem 4. The comparisons between xi and
xj are marked with ’×’ since they cannot be exactly deter-
mined. However, they do not play any role in the correctness
proof.

DCDV-Maximin-UNI. Analogously, we adopt the same reduction
as for CCDV-Maximin-UNI with the following differences. First,
we create only one vote defined as (p, q,L[x0, x|Γ|]), instead of
two as in the reduction for CCDV-Maximin-UNI. Moreover, in
CCDV-Maximin-NON we set p as the distinguished candidate, while
in DCDV-Maximin-UNI we set q as the distinguished candidate.
The comparisons between every two candidates are shown in Table
5.

Now we study Copeland control by deleting votes in 4-peaked
elections. Recall that in general, both the constructive control and
the destructive control by deleting votes for Copelandα are NP-
hard, for every 0 ≤ α ≤ 1 [15]. Our results are summarized in the
following theorem.

THEOREM 5. CCDV-Copelandα-UNI, CCDV-Copelandα-NON,
DCDV-Copelandα-UNI and DCDV-Copelandα-NON for every 0 ≤
α ≤ 1 are W[1]-hard in 4-peaked elections, with respect to the
number of deleted votes.

PROOF. Our reductions are again from the INDEPENDENT SET
problem on 2-interval graphs. Moreover, we adopt the same re-
striction on 2-intervals as in the proof of theorem 2. Therefore, in
the given instance, every two 2-intervals either do not intersect or
intersect at more than one point. Let F = (I = (I1, I2, ..., In), k)
be the given instance of the INDEPENDENT SET problem on 2-
interval graphs, we construct an instance for the problems stated in
the theorem as follows. We first consider CCDV-Copelandα-UNI,
CCDV-Copelandα-NON and DCDV-Copelandα-NON. Hereby, the
notations I1

i , I
2
i , D(Ii),Γ = ∪i∈[n]Ii and ~Γ = (x1, x2, ..., x|Γ|)

are defined in the same way as in the proof of Theorem 1.
Candidates: C = Γ ∪ {p, q}, where p is the distinguished can-

didate in CCDV-Copelandα-UNI, CCDV-Copelandα-NON and q
is the distinguished candidate in DCDV-Copelandα-NON.

4-Harmonious Order: L = (q, ~Γ, p).
Votes: We first create n − 1 votes defined as (L[x1, p], q) and

n−k+2 votes defined as (p,L[q, x|Γ|]). Then, we create 2n votes
according to the 2-intervals in F . Precisely, for every 2-interval
Ii = {I1

i = [xα, xβ ], I2
i = [xγ , xδ]} we create two votes �I1i

and �I2i as follows. Without loss of generality, assume that I2
i is

on the right side of I1
i , that is, xβ < xγ . Then, �I1i and �I2i are

respectively defined as

(L[q, xα),L(xβ , xγ),L(xδ, p],L[xα, xβ ],L[xγ , xδ]) and

(q,L[xα, xβ ],L[xγ , xδ], p,L[x1, xα),L(xβ , xγ),L(xδ, x|Γ|]).

In the following, let Π1 = {�I1i | i = 1, 2, ..., n} and Π2 = {�I2i |
i = 1, 2, ..., n}. Let E be the election with the above 4n − k + 1
votes. The comparisons are shown in Table 6.

p q xj(j > i) xj(j < i)
p - 2n− k + 1 2n− k + 2
q 2n - 3n− k + 2
xi 2n− 1 n− 1 × ×

Table 6: Comparisons between candidates in the W[1]-
hardness proof for CCDV-Copelandα-UNI, CCDV-Copelandα-
NON and DCDV-Copelandα-NON in Theorem 5. The compar-
isons between xi and xj cannot be be exactly determined. How-
ever, the comparisons do not paly any role in the correctness
proof.

Number of deleted votes: R = k.
Now we show the correctness argument for CCDV-Copelandα-

UNI.
(⇒:) Suppose that F has an independent set S of size k. We

claim that p is the unique Copelandα winner after deleting votes
corresponding to S in Π1. Let ΠS = {�I1 | I ∈ S} be the set of
the votes corresponding to S in Π1, and let E ′ be the final election
obtained from E by deleting all votes in ΠS . Due to the construc-
tion and the fact that S is an independent set, we have that for
every xi ∈ Γ there is at most one vote in ΠS which ranks p above
xi. This implies that NE′(p, xi) ≥ 2n − k + 1 for every xi ∈ Γ,
and hence, p beats every xi ∈ Γ in E ′. Moreover, since q is ranked
above p in every vote in ΠS , NE′(p, q) = 2n−k+1. Therefore, p
beats q in E ′. Summary all above, we know that p beats every other
candidate in E ′, and thus, p is the unique Copelandα winner (more
precisely, p is the Condorcet winner in E ′).

(⇐:) Suppose that p becomes the unique winner after deleting
at most k votes. Let ΠS be the set of the deleted votes. Let E ′
be the final election obtained from E by deleting all votes in ΠS .
Clearly, E ′ contains at least 4n−2k+1 votes. SinceNE′(q, xi) ≥
NE(q, xi)− k = 3n− 2k + 2 and k ≤ n, we known that q beats
every candidate xi ∈ Γ in the final election. Since p is the unique
winner in E ′, we know that ΠS contains no vote which ranks p
above q (otherwise, q would also beat p, contradicting with the fact
that p is the unique winner in E ′). Moreover, we know that p beats
every candidate xi ∈ Γ in E ′. Since the final election contains at
least 4n−2n+1 votes andNE(p, xi) = 2n−k+2, p beats every
xi ∈ Γ if there is at most one vote in ΠS which ranks p above xi.
Due to the fact, we have the following claim.

Claim. ΠS contains no vote in Π2.
The proof for the above claim is the same as for the claim in

Theorem 4. Due to the above claim, we know that ΠS ⊆ Π1. Let
S be the set of 2-intervals corresponding to ΠS . Since for every
xi ∈ Γ there is at most one vote in ΠS which ranks p above xi,
there is no two 2-intervals in S which intersect, implying that S
is an independent set for F . It remains to show that |S| = k, or
equivalently, |ΠS | = k. This holds, since otherwise, q would beat
every other candidate in E ′.

Now we show why the same reduction applies to CCDV-Copelandα-
NON. We have showed above that if there is an independent set of
size k, we can make p a (unique) winner. It remains to show the
other direction. We begin with two observations. First, observe that
we have to delete exactly k votes to make p a winner, since other-
wise, q would beat every other candidate. Second, observe that q
beats every candidate xi ∈ Γ in the final election no matter which k
votes are deleted. Then, recall that every two 2-interval in F either
do not intersect or they intersect at more than one point. Therefore,
if we delete two votes which rank p above some candidate xi, there
must be another candidate xj 6= xi which are ranked below p in



both of the two deleted votes. This implies that p beats every can-
didate in xi ∈ Γ in the final election (otherwise, p would be beaten
by at least two candidates in Γ, contradicting with the fact that p is
a winner in E ′). However, p beats every candidate in Γ only if there
is an independent set of size k for F .

To check that the same reduction applies to DCDV-Copelandα-
NON, observe first that no xi ∈ Γ can have a higher Copelandα

score than that of q in the final election—every xi is beaten by q in
the final election. Due to this, p is the only candidate which can pre-
vent q from being a winner. The argument for CCDV-Copelandα-
UNI then applies.

Now we consider DCDV-Copelandα-UNI. The reduction is sim-
ilar to the above one with the difference that we create one more
dummy candidate q′ which lies immediately on the right side of q
in the harmonious order. That is, the candidate set is Γ ∪ {p, q, q′}
with q being the distinguished candidate, and the harmonious order
is (q, q′, ~Γ, p). The role of the dummy candidate q′ is to guaran-
tee that, in the final election, every candidate in Γ is beaten by
both q and q′; and thus, exclude the possibility that some xi would
have a higher score than that of q in the final election. To achieve
this goal, we rank q′ immediately after q in every vote and re-
mains the order of other candidates unchanged. Precisely, we create
n − 1 votes defined as (L[x1, p], q, q

′), and n − k + 2 votes de-
fined as (p,L[q, x|Γ|]). Besides, for every 2-interval Ii = {I1

i =

[xαx,β ], I2
i = [xγ , xδ]} with xβ < xγ , we create two votes as

follows.

(L[q, q′, xα),L(xβ , xγ),L(xδ, p],L[xα, xβ ],L[xγ , xδ]); and

(q, q′,L[xα, xβ ],L[xγ , xδ], p,L[x1, xα),L(xβ , xγ),L(xδ, x|Γ|]).

The comparisons are shown in Table 7.

p q q′ xj
p - 2n− k + 1 2n− k + 1 2n− k + 2
q 2n - 4n− k + 1 3n− k + 2
q′ 2n 0 - 3n− k + 2
xi 2n− 1 n− 1 n− 1 ×

Table 7: Comparisons between candidates in the W[1]-
hardness proof for DCDV-Copelandα-UNI in Theorem 5. The
comparisons between xi and xj cannot be exactly determined.
However, the comparisons do not paly any role in the correct-
ness proof.

We have showed in the previous proof that if there is an inde-
pendent set of size k, the candidate p can prevent q from being the
unique winner by deleting k votes. For the other direction, observe
first that no candidate xi ∈ Γ has a chance to have a higher score
than that of q since every xi is beaten by both q and q′ in the final
election. Clearly, q′ also has no chance to prevent q from being the
unique winner since every vote ranks q above q′. Therefore, the
only candidate which can prevent q from being the unique winner
is p, and moreover, this happens only if p beats every candidate in
Γ. The remaining argument is the same as for CCDV-Copelandα-
UNI.

Now we come to the Condorcet control in 4-peaked elections.
Our results are summarized in the following theorem. Recall that
the constructive control by deleting votes for Condorcet is NP-
hard in general, while destructive control by deleting votes is poly-
nomial time sovlable [20].

THEOREM 6. CCDV-Condorcet-UNI and CCDV-Condorcet-NON
areW[1]-hard in 4-peaked elections with respect to the number of
deleted votes.

PROOF. The proof for CCDV-Condorcet-UNI is exactly the same
as for CCDV-Copelandα-UNI, and the proof for CCDV-Condorcet-
NON is exactly the same as for CCDV-Copelandα-UNI.

5. CONCLUSION
We have studied the complexity of the control problems in κ-

peaked elections which generalize single-peaked elections by al-
lowing at most κ-peaks in each vote. In particular, we proved that
the NP-hardness of control by adding/deleting votes in the gen-
eral case remains for Condorcet, Maximin and Copelandα for ev-
ery 0 ≤ α ≤ 1 in κ-peaked elections, even when κ is equal to
3 or 4. Our reductions imply that these problems are W[1]-hard
with respect to the number of added/deleted votes. See Table 1 for
a summary of our results. Several challenging and intriguing ques-
tions remain open. Among them is the complexity of control by
adding/deleting votes for Condorcet, Maximin and Copelandα in
2-peaked elections.

Finally, we remark that our results are based on worst-case anal-
ysis, and thus, the results do not tell us whether the problems are
difficult to solve in real-world settings. In practice, it could be the
case that the preferences of the voters are subjected to further re-
strictions in addition to the number of peaks that are allowed to
appear in each vote. Nevertheless, our work pinpoints the nasty
parts of the problems and is helpful in understanding and dealing
with the problems in practice.
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